PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None
Journals
Authors
Year of Publication
Document Types
1.  Voltage-gated sodium channel expression and action potential generation in differentiated NG108-15 cells 
BMC Neuroscience  2012;13:129.
Background
The generation of action potential is required for stimulus-evoked neurotransmitter release in most neurons. Although various voltage-gated ion channels are involved in action potential production, the initiation of the action potential is mainly mediated by voltage-gated Na+ channels. In the present study, differentiation-induced changes of mRNA and protein expression of Na+ channels, Na+ currents, and cell membrane excitability were investigated in NG108-15 cells.
Results
Whole-cell patch-clamp results showed that differentiation (9 days) didn’t change cell membrane excitability, compared to undifferentiated state. But differentiation (21 days) induced the action potential generation in 45.5% of NG108-15 cells (25/55 cells). In 9-day-differentiated cells, Na+ currents were mildly increased, which was also found in 21-day differentiated cells without action potential. In 21-day differentiated cells with action potential, Na+ currents were significantly enhanced. Western blot data showed that the expression of Na+ channels was increased with differentiated-time dependent manner. Single-cell real-time PCR data demonstrated that the expression of Na+ channel mRNA was increased by 21 days of differentiation in NG108-15 cells. More importantly, the mRNA level of Na+ channels in cells with action potential was higher than that in cells without action potential.
Conclusion
Differentiation induces expression of voltage-gated Na+ channels and action potential generation in NG108-15 cells. A high level of the Na+ channel density is required for differentiation-triggered action potential generation.
doi:10.1186/1471-2202-13-129
PMCID: PMC3502467  PMID: 23095258
Action potential; Na+ channel; NG108-15 cell; Patch clamp; Single-cell real-time PCR; Western blot
2.  Mitochondria-Derived Superoxide Links to Tourniquet-Induced Apoptosis in Mouse Skeletal Muscle 
PLoS ONE  2012;7(8):e43410.
Our previous study has reported that superoxide mediates ischemia-reperfusion (IR)-induced necrosis in mouse skeletal muscle. However, it remains poorly understood whether IR induces apoptosis and what factors are involved in IR-induced apoptosis in skeletal muscle. Using a murine model of tourniquet-induced hindlimb IR, we investigated the relationship between mitochondrial dysfunction and apoptosis in skeletal muscle. Hindlimbs of C57/BL6 mice were subjected to 3 h ischemia and 4 h reperfusion via placement and release of a rubber tourniquet at the greater trochanter. Compared to sham treatment, tourniquet-induced IR significantly elevated mitochondria-derived superoxide production, activated opening of mitochondrial permeability transition pore (mPTP), and caused apoptosis in the gastrocnemius muscles. Pretreatment with a superoxide dismutase mimetic (tempol, 50 mg/kg) or a mitochondrial antioxidant (co-enzyme Q10, 50 mg/kg) not only decreased mitochondria-derived superoxide production, but also inhibited mPTP opening and apoptosis in the IR gastrocnemius muscles. Additionally, an inhibitor of mPTP (cyclosporine A, 50 mg/kg) also inhibited both mPTP opening and apoptosis in the IR gastrocnemius muscles. These results suggest that mitochondria-derived superoxide overproduction triggers the mPTP opening and subsequently causes apoptosis in tourniquet-induced hindlimb IR.
doi:10.1371/journal.pone.0043410
PMCID: PMC3422247  PMID: 22912870

Results 1-2 (2)