PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
1.  Spontaneous development of IL-17-producing γδ T cells in the thymus occurs via a TGFβ1-dependent mechanism1 
In naïve animals, γδ T cells are innate sources of IL-17, a potent proinflammatory cytokine mediating bacterial clearance as well as autoimmunity. However, mechanisms underlying the generation of these cells in vivo remain unclear. Here we show that TGFβ1 plays a key role in the generation of IL-17+ γδ T cells, and that it mainly occurs in the thymus particularly during the postnatal period. Interestingly, IL-17+ γδ TCR+ thymocytes were mainly CD44highCD25low cells, which seem to derive from DN4 γδ TCR+ cells that acquired CD44 and IL-17 expression. Our findings identify a novel developmental pathway during which IL-17-competent γδ T cells arise in the thymus by a TGFβ1-dependent mechanism.
doi:10.4049/jimmunol.0903539
PMCID: PMC2844788  PMID: 20061408
γδ T cells; IL-17; TGFβ
2.  Expression and activation of the oxytocin receptor in airway smooth muscle cells: Regulation by TNFα and IL-13 
Respiratory Research  2010;11(1):104.
Background
During pregnancy asthma may remain stable, improve or worsen. The factors underlying the deleterious effect of pregnancy on asthma remain unknown. Oxytocin is a neurohypophyseal protein that regulates a number of central and peripheral responses such as uterine contractions and milk ejection. Additional evidence suggests that oxytocin regulates inflammatory processes in other tissues given the ubiquitous expression of the oxytocin receptor. The purpose of this study was to define the role of oxytocin in modulating human airway smooth muscle (HASMCs) function in the presence and absence of IL-13 and TNFα, cytokines known to be important in asthma.
Method
Expression of oxytocin receptor in cultured HASMCs was performed by real time PCR and flow cytomery assays. Responses to oxytocin was assessed by fluorimetry to detect calcium signals while isolated tracheal rings and precision cut lung slices (PCLS) were used to measure contractile responses. Finally, ELISA was used to compare oxytocin levels in the bronchoalveloar lavage (BAL) samples from healthy subjects and those with asthma.
Results
PCR analysis demonstrates that OXTR is expressed in HASMCs under basal conditions and that both interleukin (IL)-13 and tumor necrosis factor (TNFα) stimulate a time-dependent increase in OXTR expression at 6 and 18 hr. Additionally, oxytocin increases cytosolic calcium levels in fura-2-loaded HASMCs that were enhanced in cells treated for 24 hr with IL-13. Interestingly, TNFα had little effect on oxytocin-induced calcium response despite increasing receptor expression. Using isolated murine tracheal rings and PCLS, oxytocin also promoted force generation and airway narrowing. Further, oxytocin levels are detectable in bronchoalveolar lavage (BAL) fluid derived from healthy subjects as well as from those with asthma.
Conclusion
Taken together, we show that cytokines modulate the expression of functional oxytocin receptors in HASMCs suggesting a potential role for inflammation-induced changes in oxytocin receptor signaling in the regulation of airway hyper-responsiveness in asthma.
doi:10.1186/1465-9921-11-104
PMCID: PMC2922094  PMID: 20670427

Results 1-2 (2)