PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None
Journals
Year of Publication
Document Types
1.  MouseFinder: candidate disease genes from mouse phenotype data 
Human Mutation  2012;33(5):858-866.
Mouse phenotype data represents a valuable resource for the identification of disease-associated genes, especially where the molecular basis is unknown and there is no clue to the candidate gene’s function, pathway involvement or expression pattern. However, until recently these data have not been systematically used due to difficulties in mapping between clinical features observed in humans and mouse phenotype annotations. Here, we describe a semantic approach to solve this problem and demonstrate highly significant recall of known disease-gene associations and orthology relationships. A web application (MouseFinder; www.mousemodels.org) has been developed to allow users to search the results of our whole-phenome comparison of human and mouse. We demonstrate its use in identifying ARTN as a strong candidate gene within the 1p34.1-p32 mapped locus for a hereditary form of ptosis.
doi:10.1002/humu.22051
PMCID: PMC3327758  PMID: 22331800
phenotype; candidate disease genes; model organism; mouse
2.  Phenotypic overlap in the contribution of individual genes to CNV pathogenicity revealed by cross-species computational analysis of single-gene mutations in humans, mice and zebrafish 
Disease Models & Mechanisms  2012;6(2):358-372.
SUMMARY
Numerous disease syndromes are associated with regions of copy number variation (CNV) in the human genome and, in most cases, the pathogenicity of the CNV is thought to be related to altered dosage of the genes contained within the affected segment. However, establishing the contribution of individual genes to the overall pathogenicity of CNV syndromes is difficult and often relies on the identification of potential candidates through manual searches of the literature and online resources. We describe here the development of a computational framework to comprehensively search phenotypic information from model organisms and single-gene human hereditary disorders, and thus speed the interpretation of the complex phenotypes of CNV disorders. There are currently more than 5000 human genes about which nothing is known phenotypically but for which detailed phenotypic information for the mouse and/or zebrafish orthologs is available. Here, we present an ontology-based approach to identify similarities between human disease manifestations and the mutational phenotypes in characterized model organism genes; this approach can therefore be used even in cases where there is little or no information about the function of the human genes. We applied this algorithm to detect candidate genes for 27 recurrent CNV disorders and identified 802 gene-phenotype associations, approximately half of which involved genes that were previously reported to be associated with individual phenotypic features and half of which were novel candidates. A total of 431 associations were made solely on the basis of model organism phenotype data. Additionally, we observed a striking, statistically significant tendency for individual disease phenotypes to be associated with multiple genes located within a single CNV region, a phenomenon that we denote as pheno-clustering. Many of the clusters also display statistically significant similarities in protein function or vicinity within the protein-protein interaction network. Our results provide a basis for understanding previously un-interpretable genotype-phenotype correlations in pathogenic CNVs and for mobilizing the large amount of model organism phenotype data to provide insights into human genetic disorders.
doi:10.1242/dmm.010322
PMCID: PMC3597018  PMID: 23104991
3.  Phenotype Ontology Research Coordination Network meeting report: creating a community network for comparing and leveraging phenotype-genotype knowledge across species 
Standards in Genomic Sciences  2012;6(3):440-443.
Representing phenotype in a way that can be linked to thousands of molecular genetic and environmental databases is an unresolved research challenge. A recent meeting of the Phenotype Research Coordination Network (RCN) aimed to coordinate and leverage current efforts. The three day summit meeting was hosted by NESCent (The National Evolutionary Synthesis Center) in Durham, North Carolina on the 23rd – 25th of February, 2012.
doi:10.4056/sigs.2926219
PMCID: PMC3558964  PMID: 23409218
4.  On the Use of Gene Ontology Annotations to Assess Functional Similarity among Orthologs and Paralogs: A Short Report 
PLoS Computational Biology  2012;8(2):e1002386.
A recent paper (Nehrt et al., PLoS Comput. Biol. 7:e1002073, 2011) has proposed a metric for the “functional similarity” between two genes that uses only the Gene Ontology (GO) annotations directly derived from published experimental results. Applying this metric, the authors concluded that paralogous genes within the mouse genome or the human genome are more functionally similar on average than orthologous genes between these genomes, an unexpected result with broad implications if true. We suggest, based on both theoretical and empirical considerations, that this proposed metric should not be interpreted as a functional similarity, and therefore cannot be used to support any conclusions about the “ortholog conjecture” (or, more properly, the “ortholog functional conservation hypothesis”). First, we reexamine the case studies presented by Nehrt et al. as examples of orthologs with divergent functions, and come to a very different conclusion: they actually exemplify how GO annotations for orthologous genes provide complementary information about conserved biological functions. We then show that there is a global ascertainment bias in the experiment-based GO annotations for human and mouse genes: particular types of experiments tend to be performed in different model organisms. We conclude that the reported statistical differences in annotations between pairs of orthologous genes do not reflect differences in biological function, but rather complementarity in experimental approaches. Our results underscore two general considerations for researchers proposing novel types of analysis based on the GO: 1) that GO annotations are often incomplete, potentially in a biased manner, and subject to an “open world assumption” (absence of an annotation does not imply absence of a function), and 2) that conclusions drawn from a novel, large-scale GO analysis should whenever possible be supported by careful, in-depth examination of examples, to help ensure the conclusions have a justifiable biological basis.
Author Summary
Understanding gene function—how individual genes contribute to the biology of an organism at the molecular, cellular and organism levels—is one of the primary aims of biomedical research. It has been a longstanding tenet of model organism research that experimental knowledge obtained in one organism is often applicable to other organisms, particularly if the organisms share the relevant genes because they inherited them from their common ancestor. Nevertheless this tenet is, like any hypothesis, not beyond question. A recent paper has termed this hypothesis a “conjecture,” and performed a statistical analysis, the results of which were interpreted as evidence against the hypothesis. This statistical analysis relied on a computational representation of gene function, the Gene Ontology (GO). As representatives of the international consortium that produces the GO, we show how the apparent evidence against the “ortholog conjecture” can be better explained as an artifact of how molecular biology knowledge is accumulated. In short, a complementarity between knowledge obtained in mouse and human experimental systems was incorrectly interpreted as a disagreement. We discuss the proper interpretation of GO annotations and potential sources of bias, with an eye toward enhancing the informed use of the GO by the scientific community.
doi:10.1371/journal.pcbi.1002386
PMCID: PMC3280971  PMID: 22359495
5.  Uberon, an integrative multi-species anatomy ontology 
Genome Biology  2012;13(1):R5.
We present Uberon, an integrated cross-species ontology consisting of over 6,500 classes representing a variety of anatomical entities, organized according to traditional anatomical classification criteria. The ontology represents structures in a species-neutral way and includes extensive associations to existing species-centric anatomical ontologies, allowing integration of model organism and human data. Uberon provides a necessary bridge between anatomical structures in different taxa for cross-species inference. It uses novel methods for representing taxonomic variation, and has proved to be essential for translational phenotype analyses. Uberon is available at http://uberon.org
doi:10.1186/gb-2012-13-1-r5
PMCID: PMC3334586  PMID: 22293552

Results 1-5 (5)