PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
1.  Oncogene AEG-1 promotes glioma-induced neurodegeneration by increasing glutamate excitotoxicity 
Cancer research  2011;71(20):6514-6523.
Aggressive tumor growth, diffuse tissue invasion and neurodegeneration are hallmarks of malignant glioma. Although glutamate excitotoxicity is considered to play a key role in glioma-induced neurodegeneration, the mechanism(s) controlling this process is poorly understood. AEG-1 is an oncogene overexpressed in multiple types of human cancers including >90% of brain tumors. AEG-1 also promotes gliomagenesis particularly in the context of tumor growth and invasion, two primary characteristics of glioma. In the present study, we investigated the contribution of AEG-1 to glioma-induced neurodegeneration. Pearson correlation coefficient analysis in normal brain tissues and glioma patient samples indicated a strong negative correlation between expression of AEG-1 and a primary glutamate transporter of astrocytes EAAT2. Gain and loss of function studies in normal primary human fetal astrocytes and T98G glioblastoma multiforme cells revealed that AEG-1 repressed EAAT2 expression at a transcriptional level by inducing YY1 activity to inhibit CBP function as a coactivator on the EAAT2 promoter. In addition, AEG-1-mediated EAAT2 repression caused a reduction of glutamate uptake by glial cells, resulting in induction of neuronal cell death. These findings were also confirmed in glioma patient samples demonstrating that AEG-1 expression negatively correlated with NeuN expression. Taken together, our findings suggest that AEG-1 contributes to glioma-induced neurodegeneration, a hallmark of this fatal tumor, through regulation of EAAT2 expression.
doi:10.1158/0008-5472.CAN-11-0782
PMCID: PMC3193553  PMID: 21852380
AEG-1; glioma; EAAT2; glutamate; glioma-induced neurodegeneration
2.  Expression patterns of astrocyte elevated gene-1 (AEG-1) during development of the mouse embryo 
Gene expression patterns : GEP  2010;10(7-8):361-367.
Expression of astrocyte elevated gene-1 (AEG-1) is elevated in multiple human cancers including brain tumors, neuroblastomas, melanomas, breast cancers, non-small cell lung cancers, liver cancers, prostate cancers, and esophageal cancers. This gene plays crucial roles in tumor cell growth, invasion, angiogenesis and progression to metastasis. In addition, over-expression of AEG-1 protects primary and transformed cells from apoptosis-inducing signals by activating PI3K-Akt signaling pathways. These results suggest that AEG-1 is intimately involved in tumorigenesis and may serve as a potential therapeutic target for various human cancers. However, the normal physiological functions of AEG-1 require clarification. We presently analyzed the expression pattern of AEG-1 during mouse development. AEG-1 was expressed in mid-to-hindbrain, fronto-nasal processes, limbs, and pharyngeal arches in the early developmental period from E8.5 to E9.5. In addition, at stages of E12.5-E18.5 AEG-1 was localized in the brain, and olfactory and skeletal systems suggesting a role in neurogenesis, as well as in skin, including hair follicles, and in the liver, which are organ sites in which AEG-1 has been implicated in tumor development and progression. AEG-1 co-localized with Ki-67, indicating a role in cell proliferation, as previously revealed in tumorigenesis. Taken together, these results suggest that AEG-1 may play a prominent role during normal mouse development in the context of cell proliferation as well as differentiation, and that temporal regulation of AEG-1 expression may be required during specific stages and in specific tissues during development.
doi:10.1016/j.gep.2010.08.004
PMCID: PMC3165053  PMID: 20736086
AEG-1; development; mouse embryo; cell proliferation; cancer
3.  Astrocyte Elevated Gene-1 (AEG-1): a multifunctional regulator of normal and abnormal physiology 
Pharmacology & therapeutics  2011;130(1):1-8.
Since its initial identification and cloning in 2002, Astrocyte Elevated Gene-1 (AEG-1), also known as metadherin (MTDH), 3D3 and LYsine-RIch CEACAM1 co-isolated (LYRIC), has emerged as an important oncogene that is overexpressed in all cancers analyzed so far. Examination of a large cohort of patient samples representing diverse cancer indications has revealed progressive increase in AEG-1 expression with stages and grades of the disease and an inverse relationship between AEG-1 expression level and patient prognosis. AEG-1 functions as a bona fide oncogene by promoting transformation. In addition, it plays a significant role in invasion, metastasis, angiogenesis and chemoresistance, all important hallmarks of an aggressive cancer. AEG-1 is also implicated in diverse physiological and pathological processes, such as development, inflammation, neurodegeneration, migraine and Huntington disease. AEG-1 is a highly basic protein with a transmembrane domain and multiple nuclear localization signals and it is present in the cell membrane, cytoplasm, nucleus, nucleolus and endoplasmic reticulum. In each location, AEG-1 interacts with specific proteins thereby modulating diverse intracellular processes the combination of which contributes to its pleiotrophic properties. The present review provides a snapshot of the current literature along with future perspectives on this unique molecule.
doi:10.1016/j.pharmthera.2011.01.008
PMCID: PMC3043119  PMID: 21256156
Astrocyte elevated gene-1 (AEG-1); Oncogene; Metastasis; Chemoresistance; Angiogenesis; Neurodegeneration
4.  Astrocyte Elevated Gene-1 (AEG-1): a novel target for human glioma therapy 
Molecular cancer therapeutics  2010;9(1):79-88.
Malignant gliomas including glioblastoma multiforme (GBM) and anaplastic astrocytomas are the most common primary brain tumors. Despite multimodal treatment including surgery, chemotherapy and radiation, median survival for patients with GBMs is only 12–15 months. Identifying molecules critical for glioma progression is crucial for devising effective targeted therapy. In the present study, we investigated the potential contribution of Astrocyte Elevated Gene-1 (AEG-1) in gliomagenesis and explored the possibility of AEG-1 as a therapeutic target for malignant glioma. We analyzed the expression levels of AEG-1 in 9 normal brain tissues and 98 brain tumor patient samples by Western blot analysis and immunohistochemistry. AEG-1 expression was significantly elevated in > 90% of diverse human brain tumor samples including GBMs and astrocytic tumors, and also in human glioma cell lines as compared to normal brain tissues and normal astrocytes. Knockdown of AEG-1 by siRNA inhibited cell viability, cloning efficiency, invasive ability of U87 human glioma cells and 9L rat gliosarcoma cells. We also found that matrix metalloproteases (MMP-2 and MMP-9) are involved in AEG-1-mediated invasion of glioma cells. In an orthotopic nude mouse brain tumor model using primary human GBM12 tumor cells, AEG-1 siRNA significantly suppressed glioma cell growth in vivo. Taken together these provocative results indicate that AEG-1 may play a crucial role in the pathogenesis of glioma and that AEG-1 could represent a viable potential target for malignant glioma therapy.
doi:10.1158/1535-7163.MCT-09-0752
PMCID: PMC3165052  PMID: 20053777
AEG-1; brain tumor; glioma; invasion; angiogenesis
5.  Astrocyte elevated gene-1 (AEG-1): far more than just a gene regulated in astrocytes 
Cancer research  2009;69(22):8529-8535.
Since its original cloning by subtraction hybridization in 2002, it is now evident that Astrocyte elevated gene-1 (AEG-1) is a key contributor to the carcinogenic process in diverse organs. AEG-1 protein expression is elevated in advanced stages of many cancers, which correlates with poor survival. In specific cancers, such as breast and liver cancer, the AEG-1 gene itself is amplified further supporting a seminal role in tumorigenesis. Overexpression and inhibition studies both in in vitro and in in vivo models reveal the importance of AEG-1 in regulating multiple physiologically and pathologically relevant processes including proliferation, invasion, metastasis and gene expression. AEG-1 is a single-pass transmembrane protein with multiple nuclear localization signals and no known domains or motifs. Although pertinent roles of AEG-1 in the carcinogenic process are established, its potential function (promotion of metastasis only versus functioning as a bona fide oncogene) as well as localization (cell surface versus nucleus) remain areas requiring further clarification. The present review critically evaluates what is currently known about AEG-1 and provides new perspectives relative to this intriguing molecule that may provide a rational target for intervening in the cancer phenotype.
doi:10.1158/0008-5472.CAN-09-1846
PMCID: PMC2782420  PMID: 19903854

Results 1-5 (5)