PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
author:("Lee, Seok-gen")
1.  mda-7/IL-24 differentially regulates soluble and nuclear clusterin in prostate cancer 
Journal of Cellular Physiology  2012;227(5):1805-1813.
Melanoma differentiation-associated gene-7/interleukin-24 (mda-7/IL-24), a unique member of the IL-10 gene family, displays a broad range of antitumor properties including cancer-specific induction of apoptosis, inhibition of tumor angiogenesis, and modulation of anti-tumor immune responses. Here we identify clusterin (CLU) as a MDA-7/IL-24 interacting protein in DU-145 cells and investigate the role of MDA-7/IL-24 in regulating CLU expression and mediating the antitumor properties of mda-7/IL-24 in prostate cancer. Ad.mda-7 decreased expression of soluble CLU (sCLU) and increased expression of nuclear CLU (nCLU). In the initial phase of Ad.mda-7 infection sCLU expression increased and CLU interacted with MDA-7/IL-24 producing a cytoprotective effect. Infection of stable clones of DU-145 prostate cancer cells expressing sCLU with Ad.mda-7 resulted in generation of nCLU that correlated with decreased cell viability and increased apoptosis. In the presence of mda-7/IL-24, sCLU-DU-145 cells displayed G2/M phase arrest followed by apoptosis. Similarly, Ad.mda-7 infection decreased cell migration by altering cytoskeleton in sCLU-DU-145 cells. Ad.mda-7-treated sCLU-DU-145 cells displayed a significant reduction in tumor growth in mouse xenograft models and reduced angiogenesis when compared to the vector control group. Tumor tissue lysates demonstrated enhanced nCLU generated from sCLU with increased apoptosis in the presence of MDA-7/IL-24. Our findings reveal novel aspects relative to the role of sCLU/nCLU in regulating the anticancer properties of MDA-7/IL-24 that may be exploited for developing enhanced therapies for prostate cancer.
doi:10.1002/jcp.22904
PMCID: PMC3228882  PMID: 21732348
MDA-7/IL-24; soluble clusterin; nuclear clusterin; G2/M arrest; apoptosis
2.  mda-7/IL-24: A Unique Member of the IL-10 Gene Family Promoting Cancer-Targeted Toxicity 
Cytokine & growth factor reviews  2010;21(5):381-391.
Melanoma differentiation associated gene-7/interleukin-24 (mda-7/IL-24) is a unique member of the IL-10 gene family that displays nearly ubiquitous cancer-specific toxicity, with no harmful effects toward normal cells or tissues. mda-7/IL-24 was cloned from human melanoma cells by differentiation induction subtraction hybridization (DISH) and promotes endoplasmic reticulum (ER) stress culminating in apoptosis or toxic autophagy in a broad-spectrum of human cancers, when assayed in cell culture, in vivo in human tumor xenograft mouse models and in a Phase I clinical trial in patients with advanced cancers. This therapeutically active cytokine also induces indirect anti-tumor activity through inhibition of angiogenesis, stimulation of an anti-tumor immune response, and sensitization of cancer cells to radiation-, chemotherapy- and antibody-induced killing.
doi:10.1016/j.cytogfr.2010.08.004
PMCID: PMC3164830  PMID: 20926331
mda-7/IL-24; apoptosis; autophagy; bystander antitumor activity; cancer terminator virus
3.  Autophagy switches to apoptosis in prostate cancer cells infected with melanoma differentiation associated gene-7/interleukin-24 (mda-7/IL-24) 
Autophagy  2011;7(9):1076-1077.
MDA-7/IL-24 has noteworthy potential as an anticancer therapeutic because of its diversity of antitumor properties, its lack of toxicity toward normal cells and tissues, and its safety and efficacy as evidenced in a phase I clinical trial. In a recent study, we document that Ad.mda-7-induced ER stress and ceramide production leads to early autophagy that subsequently switches to apoptosis in human prostate cancer cells. During the apoptotic phase, the MDA-7/IL-24 protein physically interacts with Beclin 1 and this interaction might inhibit Beclin 1 function culminating in apoptosis. Conversely, Ad.mda-7 infection leads to calpain-mediated cleavage of the Atg5 protein that might also facilitate a biochemical switch from autophagy to apoptosis. Our recent paper reveals novel aspects of the interplay between autophagy and apoptosis that underlie the cytotoxic action of MDA-7/IL-24 in prostate cancer cells. These new insights into MDA-7/IL-24 action provide intriguing leads for developing innovative combinatorial approaches for prostate cancer therapy.
doi:10.4161/auto.7.9.16163
PMCID: PMC3210317  PMID: 21610321
mda-7/IL-24; protective autophagy; apoptosis; Beclin 1; Atg5
4.  Mechanism of autophagy to apoptosis switch triggered in prostate cancer cells by antitumor cytokine mda-7/IL-24 
Cancer research  2010;70(9):3667-3676.
mda-7/IL-24 is a unique member of the IL-10 gene family, which displays a broad range of antitumor properties including induction of cancer-specific apoptosis. Adenoviral mediated delivery by Ad.mda-7 invokes an endoplasmic reticulum stress response that is associated with ceramide production and autophagy in some cancer cells. Here we report that Ad.mda-7-induced ER stress and ceramide production triggers autophagy in human prostate cancer cells, but not normal prostate epithelial cells, through a canonical signaling pathway that involves Beclin-1, atg5 and hVps34. Autophagy occurs in cancer cells at early times after Ad.mda-7 infection but a switch to apoptosis occurs by 48 hr post-infection. Inhibiting autophagy with 3-methyladenosine increases Ad.mda-7-induced apoptosis, suggesting that autophagy may be initiated first as a cytoprotective mechanism. Inhibiting apoptosis by overexpression of anti-apoptotic proteins Bcl-2 or Bcl-xL increased autophagy after Ad.mda-7 infection. During the apoptotic phase, the MDA-7/IL-24 protein physically interacted with Beclin-1 in a manner that could inhibit Beclin-1 function culminating in apoptosis. Conversely, Ad.mda-7 infection elicited calpain-mediated cleavage of the autophagic protein ATG5 in a manner that could facilitate switch to apoptosis. Our findings reveal novel aspects of the interplay between autophagy and apoptosis in prostate cancer cells that underlie the cytotoxic action of mda-7/IL-24, possibly providing new insights in the development of combinatorial therapies for prostate cancer.
doi:10.1158/0008-5472.CAN-09-3647
PMCID: PMC2874885  PMID: 20406981
mda-7/IL-24; protective autophagy; apoptosis; Beclin-1; atg5

Results 1-4 (4)