PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
1.  Expression patterns of MDA-9/syntenin during development of the mouse embryo 
Journal of molecular histology  2012;44(2):159-166.
MDA-9 (melanoma differentiation associated gene-9)/Syntenin is a PDZ domain-containing adaptor protein involved in multiple diverse cellular processes including organization of protein complexes in the plasma membrane, intracellular trafficking and cell surface targeting, synaptic transmission, and cancer metastasis. In the present study, we analyzed the expression pattern of MDA-9/syntenin during mouse development. MDA-9/syntenin was robustly expressed with tight regulation of its temporal and spatial expression during fetal development in the developing skin, spinal cord, heart, lung and liver, which are regulated by multiple signaling pathways in the process of organogenesis. Recent studies also indicate that MDA-9/syntenin is involved in the signaling pathways crucial during development such as Wnt, Notch and FGF. Taken together, these results suggest that MDA-9/syntenin may play a prominent role during normal mouse development in the context of cell proliferation as well as differentiation through modulating multiple signaling pathways as a crucial adaptor protein. Additionally, temporal regulation of MDA-9/syntenin expression may be required during specific stages and in specific tissues during development.
doi:10.1007/s10735-012-9468-1
PMCID: PMC3605205  PMID: 23180153
MDA-9/syntenin; development; mouse embryo; adaptor protein
2.  Oncogene AEG-1 promotes glioma-induced neurodegeneration by increasing glutamate excitotoxicity 
Cancer research  2011;71(20):6514-6523.
Aggressive tumor growth, diffuse tissue invasion and neurodegeneration are hallmarks of malignant glioma. Although glutamate excitotoxicity is considered to play a key role in glioma-induced neurodegeneration, the mechanism(s) controlling this process is poorly understood. AEG-1 is an oncogene overexpressed in multiple types of human cancers including >90% of brain tumors. AEG-1 also promotes gliomagenesis particularly in the context of tumor growth and invasion, two primary characteristics of glioma. In the present study, we investigated the contribution of AEG-1 to glioma-induced neurodegeneration. Pearson correlation coefficient analysis in normal brain tissues and glioma patient samples indicated a strong negative correlation between expression of AEG-1 and a primary glutamate transporter of astrocytes EAAT2. Gain and loss of function studies in normal primary human fetal astrocytes and T98G glioblastoma multiforme cells revealed that AEG-1 repressed EAAT2 expression at a transcriptional level by inducing YY1 activity to inhibit CBP function as a coactivator on the EAAT2 promoter. In addition, AEG-1-mediated EAAT2 repression caused a reduction of glutamate uptake by glial cells, resulting in induction of neuronal cell death. These findings were also confirmed in glioma patient samples demonstrating that AEG-1 expression negatively correlated with NeuN expression. Taken together, our findings suggest that AEG-1 contributes to glioma-induced neurodegeneration, a hallmark of this fatal tumor, through regulation of EAAT2 expression.
doi:10.1158/0008-5472.CAN-11-0782
PMCID: PMC3193553  PMID: 21852380
AEG-1; glioma; EAAT2; glutamate; glioma-induced neurodegeneration
3.  Expression patterns of astrocyte elevated gene-1 (AEG-1) during development of the mouse embryo 
Gene expression patterns : GEP  2010;10(7-8):361-367.
Expression of astrocyte elevated gene-1 (AEG-1) is elevated in multiple human cancers including brain tumors, neuroblastomas, melanomas, breast cancers, non-small cell lung cancers, liver cancers, prostate cancers, and esophageal cancers. This gene plays crucial roles in tumor cell growth, invasion, angiogenesis and progression to metastasis. In addition, over-expression of AEG-1 protects primary and transformed cells from apoptosis-inducing signals by activating PI3K-Akt signaling pathways. These results suggest that AEG-1 is intimately involved in tumorigenesis and may serve as a potential therapeutic target for various human cancers. However, the normal physiological functions of AEG-1 require clarification. We presently analyzed the expression pattern of AEG-1 during mouse development. AEG-1 was expressed in mid-to-hindbrain, fronto-nasal processes, limbs, and pharyngeal arches in the early developmental period from E8.5 to E9.5. In addition, at stages of E12.5-E18.5 AEG-1 was localized in the brain, and olfactory and skeletal systems suggesting a role in neurogenesis, as well as in skin, including hair follicles, and in the liver, which are organ sites in which AEG-1 has been implicated in tumor development and progression. AEG-1 co-localized with Ki-67, indicating a role in cell proliferation, as previously revealed in tumorigenesis. Taken together, these results suggest that AEG-1 may play a prominent role during normal mouse development in the context of cell proliferation as well as differentiation, and that temporal regulation of AEG-1 expression may be required during specific stages and in specific tissues during development.
doi:10.1016/j.gep.2010.08.004
PMCID: PMC3165053  PMID: 20736086
AEG-1; development; mouse embryo; cell proliferation; cancer

Results 1-3 (3)