Search tips
Search criteria

Results 1-4 (4)

Clipboard (0)
Year of Publication
Document Types
1.  Chitinase 3–like–1 and its receptors in Hermansky-Pudlak syndrome–associated lung disease 
The Journal of Clinical Investigation  2015;125(8):3178-3192.
Hermansky-Pudlak syndrome (HPS) comprises a group of inherited disorders caused by mutations that alter the function of lysosome-related organelles. Pulmonary fibrosis is the major cause of morbidity and mortality in patients with subtypes HPS-1 and HPS-4, which both result from defects in biogenesis of lysosome-related organelle complex 3 (BLOC-3). The prototypic chitinase-like protein chitinase 3–like–1 (CHI3L1) plays a protective role in the lung by ameliorating cell death and stimulating fibroproliferative repair. Here, we demonstrated that circulating CHI3L1 levels are higher in HPS patients with pulmonary fibrosis compared with those who remain fibrosis free, and that these levels associate with disease severity. Using murine HPS models, we also determined that these animals have a defect in the ability of CHI3L1 to inhibit epithelial apoptosis but exhibit exaggerated CHI3L1-driven fibroproliferation, which together promote HPS fibrosis. These divergent responses resulted from differences in the trafficking and effector functions of two CHI3L1 receptors. Specifically, the enhanced sensitivity to apoptosis was due to abnormal localization of IL-13Rα2 as a consequence of dysfunctional BLOC-3–dependent membrane trafficking. In contrast, the fibrosis was due to interactions between CHI3L1 and the receptor CRTH2, which trafficked normally in BLOC-3 mutant HPS. These data demonstrate that CHI3L1-dependent pathways exacerbate pulmonary fibrosis and suggest CHI3L1 as a potential biomarker for pulmonary fibrosis progression and severity in HPS.
PMCID: PMC4563747  PMID: 26121745
2.  Suppression of NLRX1 in chronic obstructive pulmonary disease 
The Journal of Clinical Investigation  2015;125(6):2458-2462.
Cigarette smoke (CS) and viruses promote the inflammation and remodeling associated with chronic obstructive pulmonary disease (COPD). The MAVS/RIG-I–like helicase (MAVS/RLH) pathway and inflammasome-dependent innate immune pathways are important mediators of these responses. At baseline, the MAVS/RLH pathway is suppressed, and this inhibition must be reversed to engender tissue effects; however, the mechanisms that mediate activation and repression of the pathway have not been defined. In addition, the regulation and contribution of MAVS/RLH signaling in CS-induced inflammation and remodeling responses and in the development of human COPD remain unaddressed. Here, we demonstrate that expression of NLRX1, which inhibits the MAVS/RLH pathway and regulates other innate immune responses, was markedly decreased in 3 independent cohorts of COPD patients. NLRX1 suppression correlated directly with disease severity and inversely with pulmonary function, quality of life, and prognosis. In murine models, CS inhibited NLRX1, and CS-induced inflammation, alveolar destruction, protease induction, structural cell apoptosis, and inflammasome activation were augmented in NLRX1-deficient animals. Conversely, MAVS deficiency abrogated this CS-induced inflammation and remodeling. Restoration of NLRX1 in CS-exposed animals ameliorated alveolar destruction. These data support a model in which CS-dependent NLRX1 inhibition facilitates MAVS/RHL activation and subsequent inflammation, remodeling, protease, cell death, and inflammasome responses.
PMCID: PMC4497738  PMID: 25938787
Inflammation; Pulmonology
3.  Cigarette smoke selectively enhances viral PAMP– and virus-induced pulmonary innate immune and remodeling responses in mice 
The Journal of Clinical Investigation  2008;118(8):2771-2784.
Viral infections have more severe consequences in patients who have been exposed to cigarette smoke (CS) than in those not exposed to CS. For example, in chronic obstructive pulmonary disease (COPD), viruses cause more severe disease exacerbation, heightened inflammation, and accelerated loss of lung function compared with other causes of disease exacerbation. Symptomatology and mortality in influenza-infected smokers is also enhanced. To test the hypothesis that these outcomes are caused by CS-induced alterations in innate immunity, we defined the effects of CS on pathogen-associated molecular pattern–induced (PAMP-induced) pulmonary inflammation and remodeling in mice. CS was found to enhance parenchymal and airway inflammation and apoptosis induced by the viral PAMP poly(I:C). CS and poly(I:C) also induced accelerated emphysema and airway fibrosis. The effects of a combination of CS and poly(I:C) were associated with early induction of type I IFN and IL-18, later induction of IL-12/IL-23 p40 and IFN-γ, and the activation of double-stranded RNA-dependent protein kinase (PKR) and eukaryotic initiation factor-2α (eIF2α). Further analysis using mice lacking specific proteins indicated a role for TLR3-dependent and -independent pathways as well as a pathway or pathways that are dependent on mitochondrial antiviral signaling protein (MAVS), IL-18Rα, IFN-γ, and PKR. Importantly, CS enhanced the effects of influenza but not other agonists of innate immunity in a similar fashion. These studies demonstrate that CS selectively augments the airway and alveolar inflammatory and remodeling responses induced in the murine lung by viral PAMPs and viruses.
PMCID: PMC2483678  PMID: 18654661
4.  Overlapping and enzyme-specific contributions of matrix metalloproteinases-9 and -12 in IL-13–induced inflammation and remodeling 
IL-13 potently stimulates eosinophilic and lymphocytic inflammation and alveolar remodeling in the lung, effects that depend on the induction of various matrix metalloproteinases (MMPs). Here, we compared the remodeling and inflammatory effects of an IL-13 transgene in lungs of wild-type, MMP-9–deficient, or MMP-12–deficient mice. IL-13–induced alveolar enlargement, lung enlargement, compliance alterations, and respiratory failure and death were markedly decreased in the absence of MMP-9 or MMP-12. Moreover, IL-13 potently induced MMPs-2, -12, -13, and -14 in the absence of MMP-9, while induction of MMPs-2, -9, -13, and -14 by IL-13 was diminished in the absence of MMP-12. A deficiency in MMP-9 did not alter eosinophil, macrophage, or lymphocyte recovery, but increased the recovery of total leukocytes and neutrophils in bronchoalveolar lavage (BAL) fluids from IL-13 transgenic mice. In contrast, a deficiency in MMP-12 decreased the recovery of leukocytes, eosinophils, and macrophages, but not lymphocytes or neutrophils. These studies demonstrate that IL-13 acts via MMPs-9 and -12 to induce alveolar remodeling, respiratory failure, and death and that IL-13 induction of MMPs-2, -9, -13, and -14 is mediated at least partially by an MMP-12–dependent pathway. The also demonstrate that MMPs-9 and -12 play different roles in the generation of IL-13–induced inflammation, with MMP-9 inhibiting neutrophil accumulation and MMP-12 contributing to the accumulation of eosinophils and macrophages.
PMCID: PMC150413  PMID: 12189240

Results 1-4 (4)