PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
1.  IL-18 Induces Emphysema and Airway and Vascular Remodeling via IFN-γ, IL-17A, and IL-13 
Rationale: Chronic obstructive pulmonary disease (COPD) is characterized by chronic inflammation, alveolar destruction, and airway and vascular remodeling. However, the mechanisms that lead to these diverse alterations have not been defined.
Objectives: We hypothesized that IL-18 plays a central role in the pathogenesis of these lesions.
Methods: We generated and characterized lung-specific, inducible IL-18 transgenic mice.
Measurements and Main Results: Here we demonstrate that the expression of IL-18 in the mature murine lung induces inflammation that is associated with the accumulation of CD4+, CD8+, CD19+, and NK1.1+ cells; emphysema; mucus metaplasia; airway fibrosis; vascular remodeling; and right ventricle cardiac hypertrophy. We also demonstrate that IL-18 induces type 1, type 2, and type 17 cytokines with IFN-γ–inhibiting macrophage, lymphocyte, and eosinophil accumulation while stimulating alveolar destruction and genes associated with cell cytotoxicity and IL-13 and IL-17A inducing mucus metaplasia, airway fibrosis, and vascular remodeling. We also highlight interactions between these responses with IL-18 inducing IL-13 via an IL-17A–dependent mechanism and the type 1 and type17/type 2 responses counterregulating each another.
Conclusions: These studies define the spectrum of inflammatory, parenchymal, airway, and vascular alterations that are induced by pulmonary IL-18; highlight the similarities between these responses and the lesions in COPD; and define the selective roles that type 1, type 2, and type 17 responses play in the generation of IL-18–induced pathologies.
doi:10.1164/rccm.201108-1545OC
PMCID: PMC3373071  PMID: 22383501
IL-18; chronic obstructive pulmonary disease; airway fibrosis; mucus metaplasia; vascular remodeling
2.  RIG-like Helicase Innate Immunity Inhibits Vascular Endothelial Growth Factor Tissue Responses via a Type I IFN–dependent Mechanism 
Rationale: Vascular endothelial growth factor (VEGF) regulates vascular, inflammatory, remodeling, and cell death responses. It plays a critical role in normal pulmonary physiology, and VEGF excess and deficiency have been implicated in the pathogenesis of asthma and chronic obstructive pulmonary disease, respectively. Although viruses are an important cause of chronic obstructive pulmonary disease exacerbations and innate responses play an important role in these exacerbations, the effects of antiviral responses on VEGF homeostasis have not been evaluated.
Objectives: We hypothesized that antiviral innate immunity regulates VEGF tissue responses.
Methods: We compared the effects of transgenic VEGF165 in mice treated with viral pathogen–associated molecular pattern polyinosinic:polycytidylic acid [poly(I:C)], mice treated with live virus, and control mice.
Measurements and Main Results: Transgenic VEGF stimulated angiogenesis, edema, inflammation, and mucin accumulation. Each of these was abrogated by poly(I:C). These inhibitory effects were dose dependent, noted when poly(I:C) was administered before and after transgene activation, and mediated by a Toll-like receptor-3–independent and RIG-like helicase (RLH)– and type I IFN receptor–dependent pathway. VEGF stimulated the expression of VEGF receptor-1 and poly(I:C) inhibited this stimulation. Poly(I:C) also inhibited the ability of VEGF to activate extracellular signal–regulated kinase-1, Akt, focal adhesion kinase, and endothelial nitric oxide synthase, and aeroallergen-induced adaptive helper T-cell type 2 inflammation. Influenza and respiratory syncytial virus also inhibited VEGF-induced angiogenesis.
Conclusions: These studies demonstrate that poly(I:C) and respiratory viruses inhibit VEGF-induced tissue responses and adaptive helper T-cell type 2 inflammation and highlight the importance of a RLH- and type I IFN receptor–dependent pathway(s) in these regulatory events. They define a novel link between VEGF and antiviral and RLH innate immune responses and a novel pathway that regulates pulmonary VEGF activity.
doi:10.1164/rccm.201008-1276OC
PMCID: PMC3114061  PMID: 21278304
RIG-like helicase; mitochondrial antiviral signaling molecule; influenza virus; chronic obstructive pulmonary disease
3.  Chitin Particles Are Multifaceted Immune Adjuvants 
Rationale: Chitin is a ubiquitous polysaccharide in fungi, insects, allergens, and parasites that is released at sites of infection. Its role in the generation of tissue inflammation, however, is not fully understood.
Objectives: We hypothesized that chitin is an important adjuvant for adaptive immunity.
Methods: Mice were injected with a solution of ovalbumin and chitin.
Measurements and Main Results: We used in vivo and ex vivo/in vitro approaches to characterize the ability of chitin fragments to foster adaptive immune responses against ovalbumin and compared these responses to those induced by aluminum hydroxide (alum). In vivo, ovalbumin challenge caused an eosinophil-rich pulmonary inflammatory response, Th2 cytokine elaboration, IgE induction, and mucus metaplasia in mice that had been sensitized with ovalbumin plus chitin or ovalbumin plus alum. Toll-like receptor-2, MyD88, and IL-17A played critical roles in the chitin-induced responses, and MyD88 and IL-17A played critical roles in the alum-induced responses. In vitro, CD4+ T cells from mice sensitized with ovalbumin plus chitin were incubated with ovalbumin-stimulated bone marrow–derived dendritic cells. In these experiments, CD4+ T-cell proliferation, IL-5, IL-13, IFN-γ, and IL-17A production were appreciated. Toll-like receptor-2, MyD88, and IL-17A played critical roles in these in vitro adjuvant properties of chitin. TLR-2 was required for cell proliferation, whereas IL-17 and TLR-2 were required for cytokine elaboration. IL-17A also inhibited the generation of adaptive Th1 responses.
Conclusions: These studies demonstrate that chitin is a potent multifaceted adjuvant that induces adaptive Th2, Th1, and Th17 immune responses. They also demonstrate that the adjuvant properties of chitin are mediated by a pathway(s) that involves and is regulated by TLR-2, MyD88, and IL-17A.
doi:10.1164/rccm.200912-1877OC
PMCID: PMC3029935  PMID: 20656945
chitin; adjuvant; ovalbumin; aluminum hydroxide; alum
4.  The Chitinase-like Proteins Breast Regression Protein-39 and YKL-40 Regulate Hyperoxia-induced Acute Lung Injury 
Rationale: Prolonged exposure to 100% O2 causes hyperoxic acute lung injury (HALI), characterized by alveolar epithelial cell injury and death. We previously demonstrated that the murine chitinase-like protein, breast regression protein (BRP)–39 and its human homolog, YKL-40, inhibit cellular apoptosis. However, the regulation and roles of these molecules in hyperoxia have not been addressed.
Objectives: We hypothesized that BRP-39 and YKL-40 (also called chitinase-3–like 1) play important roles in the pathogenesis of HALI.
Methods: We characterized the regulation of BRP-39 during HALI and the responses induced by hyperoxia in wild-type mice, BRP-39–null (−/−) mice, and BRP-39−/− mice in which YKL-40 was overexpressed in respiratory epithelium. We also compared the levels of tracheal aspirate YKL-40 in premature newborns with respiratory failure.
Measurements and Main Results: These studies demonstrate that hyperoxia inhibits BRP-39 in vivo in the murine lung and in vitro in epithelial cells. They also demonstrate that BRP-39−/− mice have exaggerated permeability, protein leak, oxidation, inflammatory, chemokine, and epithelial apoptosis responses, and experience premature death in 100% O2. Lastly, they demonstrate that YKL-40 ameliorates HALI, prolongs survival in 100% O2, and rescues the exaggerated injury response in BRP-39−/− animals. In accord with these findings, the levels of tracheal aspirate YKL-40 were lower in premature infants treated with hyperoxia for respiratory failure who subsequently experienced bronchopulmonary dysplasia or death compared with those that did not experience these complications.
Conclusions: These studies demonstrate that hyperoxia inhibits BRP-39/YKL-40, and that BRP-39 and YKL-40 are critical regulators of oxidant injury, inflammation, and epithelial apoptosis in the murine and human lung.
doi:10.1164/rccm.200912-1793OC
PMCID: PMC2970863  PMID: 20558631
BRP-39; YKL-40; hyperoxygen; BPD; HALI

Results 1-4 (4)