PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
author:("Lee, Chun gen")
1.  VEGF controls lung Th2 inflammation via the miR-1–Mpl (myeloproliferative leukemia virus oncogene)–P-selectin axis 
The Journal of Experimental Medicine  2013;210(10):1993-2010.
VEGF dampens the expression of microRNA-1, which drives inflammation in part via increasing the expression of Mpl.
Asthma, the prototypic Th2-mediated inflammatory disorder of the lung, is an emergent disease worldwide. Vascular endothelial growth factor (VEGF) is a critical regulator of pulmonary Th2 inflammation, but the underlying mechanism and the roles of microRNAs (miRNAs) in this process have not been defined. Here we show that lung-specific overexpression of VEGF decreases miR-1 expression in the lung, most prominently in the endothelium, and a similar down-regulation occurs in lung endothelium in Th2 inflammation models. Intranasal delivery of miR-1 inhibited inflammatory responses to ovalbumin, house dust mite, and IL-13 overexpression. Blocking VEGF inhibited Th2-mediated lung inflammation, and this was restored by antagonizing miR-1. Using mRNA arrays, Argonaute pull-down assays, luciferase expression assays, and mutational analysis, we identified Mpl as a direct target of miR-1 and showed that VEGF controls the expression of endothelial Mpl during Th2 inflammation via the regulation of miR-1. In vivo knockdown of Mpl inhibited Th2 inflammation and indirectly inhibited the expression of P-selectin in lung endothelium. These experiments define a novel VEGF–miR-1–Mpl–P-selectin effector pathway in lung Th2 inflammation and herald the utility of miR-1 and Mpl as potential therapeutic targets for asthma.
doi:10.1084/jem.20121200
PMCID: PMC3782056  PMID: 24043765
2.  Role of Chitin and Chitinase/Chitinase-Like Proteins in Inflammation, Tissue Remodeling, and Injury 
Annual review of physiology  2011;73:10.1146/annurev-physiol-012110-142250.
The 18 glycosyl hydrolase family of chitinases is an ancient gene family that is widely expressed from prokaryotes to eukaryotes. In mammals, despite the absence of endogenous chitin, a number of chitinases and chitinase-like proteins (C/CLPs) have been identified. However, their roles have only recently begun to be elucidated. Acidic mammalian chitinase (AMCase) inhibits chitin-induced innate inflammation; augments chitin-free, allergen-induced Th2 inflammation; and mediates effector functions of IL-13. The CLPs BRP-39/YKL-40 (also termed chitinase 3-like 1) inhibit oxidant-induced lung injury, augments adaptive Th2 immunity, regulates apoptosis, stimulates alternative macrophage activation, and contributes to fibrosis and wound healing. In accord with these findings, levels of YKL-40 in the lung and serum are increased in asthma and other inflammatory and remodeling disorders and often correlate with disease severity. Our understanding of the roles of C/CLPs in inflammation, tissue remodeling, and tissue injury in health and disease is reviewed below.
doi:10.1146/annurev-physiol-012110-142250
PMCID: PMC3864643  PMID: 21054166
asthma; fibrosis; BRP-39/YKL-40; AMCase; chitotriosidase
3.  Chitinase-like Proteins in Lung Injury, Repair, and Metastasis 
This report explains how our studies of asthma and Th2 inflammation led us to investigate the roles of chitinase-like proteins (CLPs) in lung injury and repair and puts forth an overall hypothesis that can explain the roles that these moieties play in biology and a hypothesis regarding the ways that dysregulated CLP expression may contribute to the pathogenesis of a variety of diseases. We test this hypothesis by assessing the contributions of the CLP breast regression protein (BRP)-39 in the pathogenesis of malignant melanoma metastasis to the lung.
doi:10.1513/pats.201112-056MS
PMCID: PMC3359113  PMID: 22550243
BRP-39/YKL-40; inflammation; injury; repair; metastasis
4.  Studies of Vascular Endothelial Growth Factor in Asthma and Chronic Obstructive Pulmonary Disease 
Vascular endothelial growth factor (VEGF) is a potent stimulator of vascular angiogenesis, permeability, and remodeling that also plays important roles in wound healing and tissue cytoprotection. To begin to define the roles of VEGF in diseases like asthma and COPD, we characterized the effects of lung-targeted transgenic VEGF165 and defined the innate immune pathways that regulate VEGF tissue responses. The former studies demonstrated that VEGF plays an important role in Th2 inflammation because, in addition to stimulating angiogenesis and edema, VEGF induced eosinophilic inflammation, mucus metaplasia, subepithelial fibrosis, myocyte hyperplasia, dendritic cell activation, and airways hyperresponsiveness via IL-13–dependent and -independent mechanisms. VEGF was also produced at sites of aeroallergen-induced Th2 inflammation, and VEGF receptor blockade ameliorated adaptive Th2 inflammation and Th2 cytokine elaboration. The latter studies demonstrated that activation of the RIG-like helicase (RLH) innate immune pathway using viral pathogen–associated molecular patterns such as Poly(I:C) or viruses ameliorated VEGF-induced tissue responses. In accord with these findings, Poly(I:C)-induced RLH activation also abrogated aeroallergen-induced Th2 inflammation. When viewed in combination, these studies suggest that VEGF excess can contribute to the pathogenesis of Th2 inflammatory disorders such as asthma and that abrogation of VEGF signaling via RLH activation can contribute to the pathogenesis of viral disorders such as virus-induced COPD exacerbations. They also suggest that RLH activation may be a useful therapeutic strategy in asthma and related disorders.
doi:10.1513/pats.201102-018MW
PMCID: PMC3359071  PMID: 22052929
asthma; chronic obstructive pulmonary disease; virus; RIG-like helicase; mitochondrial antiviral signaling molecule

Results 1-4 (4)