Search tips
Search criteria

Results 1-2 (2)

Clipboard (0)
Year of Publication
Document Types
1.  Histopathological findings, phenotyping of inflammatory cells, and expression of markers of nitritative injury in joint tissue samples from calves after vaccination and intraarticular challenge with Mycoplasma bovis strain 1067 
The pathogenesis of caseonecrotic lesions developing in lungs and joints of calves infected with Mycoplasma bovis is not clear and attempts to prevent M. bovis-induced disease by vaccines have been largely unsuccessful. In this investigation, joint samples from 4 calves, i.e. 2 vaccinated and 2 non-vaccinated, of a vaccination experiment with intraarticular challenge were examined. The aim was to characterize the histopathological findings, the phenotypes of inflammatory cells, the expression of class II major histocompatibility complex (MHC class II) molecules, and the expression of markers for nitritative stress, i.e. inducible nitric oxide synthase (iNOS) and nitrotyrosine (NT), in synovial membrane samples from these calves. Furthermore, the samples were examined for M. bovis antigens including variable surface protein (Vsp) antigens and M. bovis organisms by cultivation techniques.
The inoculated joints of all 4 calves had caseonecrotic and inflammatory lesions. Necrotic foci were demarcated by phagocytic cells, i.e. macrophages and neutrophilic granulocytes, and by T and B lymphocytes. The presence of M. bovis antigens in necrotic tissue lesions was associated with expression of iNOS and NT by macrophages. Only single macrophages demarcating the necrotic foci were positive for MHC class II. Microbiological results revealed that M. bovis had spread to approximately 27% of the non-inoculated joints. Differences in extent or severity between the lesions in samples from vaccinated and non-vaccinated animals were not seen.
The results suggest that nitritative injury, as in pneumonic lung tissue of M. bovis-infected calves, is involved in the development of caseonecrotic joint lesions. Only single macrophages were positive for MHC class II indicating down-regulation of antigen-presenting mechanisms possibly caused by local production of iNOS and NO by infiltrating macrophages.
PMCID: PMC4236525  PMID: 25162202
Mycoplasma bovis; Arthritis; Vaccination; Variable surface protein antigens; MHC class II; Inducible nitric oxide; Nitrotyrosine
2.  Development of a Recombinant Antigen for Antibody-Based Diagnosis of Mycoplasma bovis Infection in Cattle 
Mycoplasma bovis induces various clinical manifestations in cattle, such as mastitis, arthritis, and pneumonia. We have evaluated the immunoreactivity of three variable surface proteins (Vsps) of M. bovis, namely VspA, VspB, and VspC, with sera collected from herds with mycoplasmosis or from cattle experimentally infected with M. bovis. Western blot analysis revealed that the Vsps are the predominant antigens recognized by the host humoral response during M. bovis infection. The immunoreactivity of VspA, VspB, and VspC with host antibodies was independent of the clinical manifestations, the geographical origin of the M. bovis isolates, the mode of infection, and the animal’s history. Moreover, the results showed that Vsp-specific host antibodies can be detected about 10 days after experimental infection and for up to several months. The full-length or truncated versions of the VspA product were overexpressed in Escherichia coli as fusion proteins (FP-VspA). Recombinant products showed strong immunoreactivity with the Vsp-specific monoclonal antibodies 1A1 and 1E5, with the corresponding epitopes localized at the VspA N-terminal and C-terminal ends, respectively. Anti-M. bovis sera of cattle naturally or experimentally infected also strongly recognized the full-length FP-VspA. The seroreactivity of sera collected from cattle between 6 and 10 days after experimental infection was weaker with truncated versions of VspA lacking the 1E5 epitope than with the full-length VspA or the truncated versions lacking the 1A1 epitope. Overall, the results indicate that the Vsps, despite their inter- and intraclonal variability, may be applied as target antigens in serodiagnostic assays for epidemiological studies.
PMCID: PMC95789  PMID: 10548577

Results 1-2 (2)