Search tips
Search criteria

Results 1-1 (1)

Clipboard (0)
more »
Year of Publication
Document Types
1.  Novel Loci for Metabolic Networks and Multi-Tissue Expression Studies Reveal Genes for Atherosclerosis 
PLoS Genetics  2012;8(8):e1002907.
Association testing of multiple correlated phenotypes offers better power than univariate analysis of single traits. We analyzed 6,600 individuals from two population-based cohorts with both genome-wide SNP data and serum metabolomic profiles. From the observed correlation structure of 130 metabolites measured by nuclear magnetic resonance, we identified 11 metabolic networks and performed a multivariate genome-wide association analysis. We identified 34 genomic loci at genome-wide significance, of which 7 are novel. In comparison to univariate tests, multivariate association analysis identified nearly twice as many significant associations in total. Multi-tissue gene expression studies identified variants in our top loci, SERPINA1 and AQP9, as eQTLs and showed that SERPINA1 and AQP9 expression in human blood was associated with metabolites from their corresponding metabolic networks. Finally, liver expression of AQP9 was associated with atherosclerotic lesion area in mice, and in human arterial tissue both SERPINA1 and AQP9 were shown to be upregulated (6.3-fold and 4.6-fold, respectively) in atherosclerotic plaques. Our study illustrates the power of multi-phenotype GWAS and highlights candidate genes for atherosclerosis.
Author Summary
In this study, we aim to identify novel genetic variants for metabolism, characterize their effects on nearby genes, and show that the nearby genes are associated with metabolism and atherosclerosis. To discover new genetic variants, we use an alternative approach to traditional genome-wide association studies: we leverage the information in phenotype covariance to increase our statistical power. We identify variants at seven novel loci and then show that our top signals drive expression of nearby genes AQP9 and SERPINA1 in multiple tissues. We demonstrate that AQP9 and SERPINA1 gene expression, in turn, is associated with metabolite levels. Finally, we show that the genes are associated with atherosclerosis using mouse atherosclerotic lesion size (AQP9) as well as tissue from healthy human arteries and atherosclerotic plaques (AQP9 and SERPINA1). This study illustrates that multivariate analysis of correlated metabolites can boost power for gene discovery substantially. Further functional work will need to be performed to elucidate the biological role of SERPINA1 and AQP9 in atherosclerosis.
PMCID: PMC3420921  PMID: 22916037

Results 1-1 (1)