PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None
Journals
Authors
Year of Publication
1.  Local application of FTY720 to the lung abrogates experimental asthma by altering dendritic cell function 
Journal of Clinical Investigation  2006;116(11):2935-2944.
Airway DCs play a crucial role in the pathogenesis of allergic asthma, and interfering with their function could constitute a novel form of therapy. The sphingosine 1–phosphate receptor agonist FTY720 is an oral immunosuppressant that retains lymphocytes in lymph nodes and spleen, thus preventing lymphocyte migration to inflammatory sites. The accompanying lymphopenia could be a serious side effect that would preclude the use of FTY720 as an antiasthmatic drug. Here we show in a murine asthma model that local application of FTY720 via inhalation prior to or during ongoing allergen challenge suppresses Th2-dependent eosinophilic airway inflammation and bronchial hyperresponsiveness without causing lymphopenia and T cell retention in the lymph nodes. Effectiveness of local treatment was achieved by inhibition of the migration of lung DCs to the mediastinal lymph nodes, which in turn inhibited the formation of allergen-specific Th2 cells in lymph nodes. Also, FTY720-treated DCs were intrinsically less potent in activating naive and effector Th2 cells due to a reduced capacity to form stable interactions with T cells and thus to form an immunological synapse. These data support the concept that targeting the function of airway DCs with locally acting drugs is a powerful new strategy in the treatment of asthma.
doi:10.1172/JCI28295
PMCID: PMC1626118  PMID: 17080194
2.  An unexpected role for the anaphylatoxin C5a receptor in allergic sensitization 
Journal of Clinical Investigation  2006;116(3):628-632.
The anaphylatoxins complement component 3a and 5a (C3a and C5a, respectively) are classically seen as proinflammatory mediators of allergic asthma that recruit inflammatory cells, induce edema, and cause bronchoconstriction. A few years ago, controversy arose when it was shown that C5-deficient mice were more susceptible to experimental asthma compared with C5-sufficient mice. In a study by Köhl et al. in this issue of the JCI, it is shown in a series of truly “complementary” experiments that C5a receptor (C5aR) blockade promotes Th2 sensitization upon first exposure to inhaled allergen, whereas C5aR blockade during established inflammation suppresses the cardinal features of asthma. Blockade of C5aR alters the function of airway DCs, crucial for inducing and maintaining Th2 responses in the lung. Targeting C5aR as a treatment for established asthma could be beneficial, but might be accompanied by sensitization to novel antigens.
doi:10.1172/JCI27876
PMCID: PMC1386114  PMID: 16511597

Results 1-2 (2)