PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None
Journals
Authors
Year of Publication
Document Types
1.  Inflammatory dendritic cells—not basophils—are necessary and sufficient for induction of Th2 immunity to inhaled house dust mite allergen 
The Journal of Experimental Medicine  2010;207(10):2097-2111.
It is unclear how Th2 immunity is induced in response to allergens like house dust mite (HDM). Here, we show that HDM inhalation leads to the TLR4/MyD88-dependent recruitment of IL-4 competent basophils and eosinophils, and of inflammatory DCs to the draining mediastinal nodes. Depletion of basophils only partially reduced Th2 immunity, and depletion of eosinophils had no effect on the Th2 response. Basophils did not take up inhaled antigen, present it to T cells, or express antigen presentation machinery, whereas a population of FceRI+ DCs readily did. Inflammatory DCs were necessary and sufficient for induction of Th2 immunity and features of asthma, whereas basophils were not required. We favor a model whereby DCs initiate and basophils amplify Th2 immunity to HDM allergen.
doi:10.1084/jem.20101563
PMCID: PMC2947072  PMID: 20819925
2.  High mobility group box-1 recognition: The beginning of a RAGEless era? 
EMBO Molecular Medicine  2010;2(6):193-195.
High mobility group box 1 (HMGB1) is a molecular alarm signal that triggers an immune response when released. It was assumed that the receptor for advanced glycation end-products (RAGE) would mediate the signal to the immune system. Recently pattern recognition receptors that are triggered by molecules of bacterial origin (the Toll-like receptor (TLR) family) were shown to also respond to HMGB1. Now two papers establish the TLR4–HMGB1 axis as proinflammatory, eventually leading to disparate conditions like seizures or skin cancer. These reports add a new twist to our understanding of the mode of action of the alarm signal HMGB1.
doi:10.1002/emmm.201000077
PMCID: PMC3377318  PMID: 20535746
HMGB1; inflammation; TLR4

Results 1-2 (2)