PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None
Journals
Authors
Year of Publication
Document Types
1.  Potential of Immunoglobulin A to Prevent Allergic Asthma 
Allergic asthma is characterized by bronchial hyperresponsiveness, a defective barrier function, and eosinophilic lower airway inflammation in response to allergens. The inflammation is dominated by Th2 cells and IgE molecules and supplemented with Th17 cells in severe asthma. In contrast, in healthy individuals, allergen-specific IgA and IgG4 molecules are found but no IgE, and their T cells fail to proliferate in response to allergens, probably because of the development of regulatory processes that actively suppress responses to allergens. The presence of allergen-specific secretory IgA has drawn little attention so far, although a few epidemiological studies point at a reverse association between IgA levels and the incidence of allergic airway disease. This review highlights the latest literature on the role of mucosal IgA in protection against allergic airway disease, the mechanisms described to induce secretory IgA, and the role of (mucosal) dendritic cells in this process. Finally, we discuss how this information can be used to translate into the development of new therapies for allergic diseases based on, or supplemented with, IgA boosting strategies.
doi:10.1155/2013/542091
PMCID: PMC3649226  PMID: 23690823
2.  Cellular networks controlling Th2 polarization in allergy and immunity 
In contrast to the development of Th1 (type 1 T helper cells), Th17 and Treg (regulatory T cells), little is known of the mechanisms governing Th2 development, which is important for immunity to helminths and for us to understand the pathogenesis of allergy. A picture is emerging in which mucosal epithelial cells instruct dendritic cells to promote Th2 responses in the absence of IL-12 (interleukin 12) production and provide instruction through thymic stromal lymphopoieitin (TSLP) or granulocyte-macrophage colony stimulating factor (GM-CSF). At the same time, allergens, helminths and chemical adjuvants elicit the response of innate immune cells like basophils, which provide more polarizing cytokines and IL-4 and reinforce Th2 immunity. This unique communication between cells will only be fully appreciated if we study Th2 immunity in vivo and in a tissue-specific context, and can only be fully understood if we compare several models of Th2 immune response induction.
doi:10.3410/B4-6
PMCID: PMC3292286  PMID: 22403589
3.  TLR4 signalling in pulmonary stromal cells is critical for inflammation and immunity in the airways 
Respiratory Research  2011;12(1):125.
Inflammation of the airways, which is often associated with life-threatening infection by Gram-negative bacteria or presence of endotoxin in the bioaerosol, is still a major cause of severe airway diseases. Moreover, inhaled endotoxin may play an important role in the development and progression of airway inflammation in asthma. Pathologic changes induced by endotoxin inhalation include bronchospasm, airflow obstruction, recruitment of inflammatory cells, injury of the alveolar epithelium, and disruption of pulmonary capillary integrity leading to protein rich fluid leak in the alveolar space. Mammalian Toll-like receptors (TLRs) are important signalling receptors in innate host defense. Among these receptors, TLR4 plays a critical role in the response to endotoxin.
Lungs are a complex compartmentalized organ with separate barriers, namely the alveolar-capillary barrier, the microvascular endothelium, and the alveolar epithelium. An emerging theme in the field of lung immunology is that structural cells (SCs) of the airways such as epithelial cells (ECs), endothelial cells, fibroblasts and other stromal cells produce activating cytokines that determine the quantity and quality of the lung immune response. This review focuses on the role of TLR4 in the innate and adaptive immune functions of the pulmonary SCs.
doi:10.1186/1465-9921-12-125
PMCID: PMC3189122  PMID: 21943186
Airway diseases; dendritic cells; epithelial cell; pulmonary stromal cells; TLR4

Results 1-3 (3)