PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
1.  SpliceTrap: a method to quantify alternative splicing under single cellular conditions 
Bioinformatics  2011;27(21):3010-3016.
Motivation: Alternative splicing (AS) is a pre-mRNA maturation process leading to the expression of multiple mRNA variants from the same primary transcript. More than 90% of human genes are expressed via AS. Therefore, quantifying the inclusion level of every exon is crucial for generating accurate transcriptomic maps and studying the regulation of AS.
Results: Here we introduce SpliceTrap, a method to quantify exon inclusion levels using paired-end RNA-seq data. Unlike other tools, which focus on full-length transcript isoforms, SpliceTrap approaches the expression-level estimation of each exon as an independent Bayesian inference problem. In addition, SpliceTrap can identify major classes of alternative splicing events under a single cellular condition, without requiring a background set of reads to estimate relative splicing changes. We tested SpliceTrap both by simulation and real data analysis, and compared it to state-of-the-art tools for transcript quantification. SpliceTrap demonstrated improved accuracy, robustness and reliability in quantifying exon-inclusion ratios.
Conclusions: SpliceTrap is a useful tool to study alternative splicing regulation, especially for accurate quantification of local exon-inclusion ratios from RNA-seq data.
Availability and Implementation: SpliceTrap can be implemented online through the CSH Galaxy server http://cancan.cshl.edu/splicetrap and is also available for download and installation at http://rulai.cshl.edu/splicetrap/.
Contact: michael.zhang@utdallas.edu
Supplementary Information: Supplementary data are available at Bioinformatics online.
doi:10.1093/bioinformatics/btr508
PMCID: PMC3198574  PMID: 21896509
2.  A Splicing-Independent Function of SF2/ASF in MicroRNA Processing 
Molecular Cell  2010;38(1):67-77.
SUMMARY
Both splicing factors and microRNAs are important regulatory molecules that play key roles in post-transcriptional gene regulation. By miRNA deep sequencing, we identified 40 miRNAs that are differentially expressed upon ectopic overexpression of the splicing factor SF2/ASF. Here we show that SF2/ASF and one of its upregulated microRNAs (miR-7) can form a negative feedback loop: SF2/ASF promotes miR-7 maturation, and mature miR-7 in turn targets the 3′UTR of SF2/ASF to repress its translation. Enhanced microRNA expression is mediated by direct interaction between SF2/ASF and the primary miR-7 transcript to facilitate Drosha cleavage and is independent of SF2/ASF’s function in splicing. Other miRNAs, including miR-221 and miR-222, may also be regulated by SF2/ASF through a similar mechanism. These results underscore a function of SF2/ASF in pri-miRNA processing and highlight the potential coordination between splicing control and miRNA-mediated gene repression in gene regulatory networks.
doi:10.1016/j.molcel.2010.02.021
PMCID: PMC3395997  PMID: 20385090
3.  SF2/ASF Autoregulation Involves Multiple Layers of Post-transcriptional and Translational Control 
SF2/ASF is a prototypical SR protein, with important roles in splicing and other aspects of mRNA metabolism. SFRS1 (SF2/ASF) is a potent proto-oncogene with abnormal expression in many tumors. We found that SF2/ASF negatively autoregulates its expression to maintain homeostatic levels. We characterized six SF2/ASF alternatively spliced mRNA isoforms: the major isoform encodes full-length protein, whereas the others are either retained in the nucleus or degraded by NMD. Unproductive splicing accounts for only part of the autoregulation, which occurs primarily at the translational level. The effect is specific to SF2/ASF and requires RRM2. The ultraconserved 3′UTR is necessary and sufficient for downregulation. SF2/ASF overexpression shifts the distribution of target mRNA towards mono-ribosomes, and translational repression is partly independent of Dicer and a 5′ cap. Thus, multiple post-transcriptional and translational mechanisms are involved in fine-tuning the expression of SF2/ASF.
doi:10.1038/nsmb.1750
PMCID: PMC2921916  PMID: 20139984

Results 1-3 (3)