PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-12 (12)
 

Clipboard (0)
None
Journals
Year of Publication
Document Types
1.  Quod erat demonstrandum? The mystery of experimental validation of apparently erroneous computational analyses of protein sequences 
Genome Biology  2001;2(12):research0051.1-research0051.11.
Background
Computational predictions are critical for directing the experimental study of protein functions. Therefore it is paradoxical when an apparently erroneous computational prediction seems to be supported by experiment.
Results
We analyzed six cases where application of novel or conventional computational methods for protein sequence and structure analysis led to non-trivial predictions that were subsequently supported by direct experiments. We show that, on all six occasions, the original prediction was unjustified, and in at least three cases, an alternative, well-supported computational prediction, incompatible with the original one, could be derived. The most unusual cases involved the identification of an archaeal cysteinyl-tRNA synthetase, a dihydropteroate synthase and a thymidylate synthase, for which experimental verifications of apparently erroneous computational predictions were reported. Using sequence-profile analysis, multiple alignment and secondary-structure prediction, we have identified the unique archaeal 'cysteinyl-tRNA synthetase' as a homolog of extracellular polygalactosaminidases, and the 'dihydropteroate synthase' as a member of the β-lactamase-like superfamily of metal-dependent hydrolases.
Conclusions
In each of the analyzed cases, the original computational predictions could be refuted and, in some instances, alternative strongly supported predictions were obtained. The nature of the experimental evidence that appears to support these predictions remains an open question. Some of these experiments might signify discovery of extremely unusual forms of the respective enzymes, whereas the results of others could be due to artifacts.
PMCID: PMC64836  PMID: 11790254
2.  Two C or not two C: recurrent disruption of Zn-ribbons, gene duplication, lineage-specific gene loss, and horizontal gene transfer in evolution of bacterial ribosomal proteins 
Genome Biology  2001;2(9):research0033.1-research0033.14.
Background
Ribosomal proteins are encoded in all genomes of cellular life forms and are, generally, well conserved during evolution. In prokaryotes, the genes for most ribosomal proteins are clustered in several highly conserved operons, which ensures efficient co-regulation of their expression. Duplications of ribosomal-protein genes are infrequent, and given their coordinated expression and functioning, it is generally assumed that ribosomal-protein genes are unlikely to undergo horizontal transfer. However, with the accumulation of numerous complete genome sequences of prokaryotes, several paralogous pairs of ribosomal protein genes have been identified. Here we analyze all such cases and attempt to reconstruct the evolutionary history of these ribosomal proteins.
Results
Complete bacterial genomes were searched for duplications of ribosomal proteins. Ribosomal proteins L36, L33, L31, S14 are each duplicated in several bacterial genomes and ribosomal proteins L11, L28, L7/L12, S1, S15, S18 are so far duplicated in only one genome each. Sequence analysis of the four ribosomal proteins, for which paralogs were detected in several genomes, two of the ribosomal proteins duplicated in one genome (L28 and S18), and the ribosomal protein L32 showed that each of them comes in two distinct versions. One form contains a predicted metal-binding Zn-ribbon that consists of four conserved cysteines (in some cases replaced by histidines), whereas, in the second form, these metal-chelating residues are completely or partially replaced. Typically, genomes containing paralogous genes for these ribosomal proteins encode both versions, designated C+ and C-, respectively. Analysis of phylogenetic trees for these seven ribosomal proteins, combined with comparison of genomic contexts for the respective genes, indicates that in most, if not all cases, their evolution involved a duplication of the ancestral C+ form early in bacterial evolution, with subsequent alternative loss of the C+ and C- forms in different lineages. Additionally, evidence was obtained for a role of horizontal gene transfer in the evolution of these ribosomal proteins, with multiple cases of gene displacement 'in situ', that is, without a change of the gene order in the recipient genome.
Conclusions
A more complex picture of evolution of bacterial ribosomal proteins than previously suspected is emerging from these results, with major contributions of lineage-specific gene loss and horizontal gene transfer. The recurrent theme of emergence and disruption of Zn-ribbons in bacterial ribosomal proteins awaits a functional interpretation.
PMCID: PMC56895  PMID: 11574053
3.  Common Origin of Four Diverse Families of Large Eukaryotic DNA Viruses 
Journal of Virology  2001;75(23):11720-11734.
Comparative analysis of the protein sequences encoded in the genomes of three families of large DNA viruses that replicate, completely or partly, in the cytoplasm of eukaryotic cells (poxviruses, asfarviruses, and iridoviruses) and phycodnaviruses that replicate in the nucleus reveals 9 genes that are shared by all of these viruses and 22 more genes that are present in at least three of the four compared viral families. Although orthologous proteins from different viral families typically show weak sequence similarity, because of which some of them have not been identified previously, at least five of the conserved genes appear to be synapomorphies (shared derived characters) that unite these four viral families, to the exclusion of all other known viruses and cellular life forms. Cladistic analysis with the genes shared by at least two viral families as evolutionary characters supports the monophyly of poxviruses, asfarviruses, iridoviruses, and phycodnaviruses. The results of genome comparison allow a tentative reconstruction of the ancestral viral genome and suggest that the common ancestor of all of these viral families was a nucleocytoplasmic virus with an icosahedral capsid, which encoded complex systems for DNA replication and transcription, a redox protein involved in disulfide bond formation in virion membrane proteins, and probably inhibitors of apoptosis. The conservation of the disulfide-oxidoreductase, a major capsid protein, and two virion membrane proteins indicates that the odd-shaped virions of poxviruses have evolved from the more common icosahedral virion seen in asfarviruses, iridoviruses, and phycodnaviruses.
doi:10.1128/JVI.75.23.11720-11734.2001
PMCID: PMC114758  PMID: 11689653
4.  Constant relative rate of protein evolution and detection of functional diversification among bacterial, archaeal and eukaryotic proteins 
Genome Biology  2001;2(12):research0053.1-research0053.9.
Background
Detection of changes in a protein's evolutionary rate may reveal cases of change in that protein's function. We developed and implemented a simple relative rates test in an attempt to assess the rate constancy of protein evolution and to detect cases of functional diversification between orthologous proteins. The test was performed on clusters of orthologous protein sequences from complete bacterial genomes (Chlamydia trachomatis, C. muridarum and Chlamydophila pneumoniae), complete archaeal genomes (Pyrococcus horikoshii, P. abyssi and P. furiosus) and partially sequenced mammalian genomes (human, mouse and rat).
Results
Amino-acid sequence evolution rates are significantly correlated on different branches of phylogenetic trees representing the great majority of analyzed orthologous protein sets from all three domains of life. However, approximately 1% of the proteins from each group of species deviates from this pattern and instead shows variation that is consistent with an acceleration of the rate of amino-acid substitution, which may be due to functional diversification. Most of the putative functionally diversified proteins from all three species groups are predicted to function at the periphery of the cells and mediate their interaction with the environment.
Conclusions
Relative rates of protein evolution are remarkably constant for the three species groups analyzed here. Deviations from this rate constancy are probably due to changes in selective constraints associated with diversification between orthologs. Functional diversification between orthologs is thought to be a relatively rare event. However, the resolution afforded by the test designed specifically for genomic-scale datasets allowed us to identify numerous cases of possible functional diversification between orthologous proteins.
PMCID: PMC64838  PMID: 11790256
5.  Genome trees constructed using five different approaches suggest new major bacterial clades 
Background
The availability of multiple complete genome sequences from diverse taxa prompts the development of new phylogenetic approaches, which attempt to incorporate information derived from comparative analysis of complete gene sets or large subsets thereof. Such attempts are particularly relevant because of the major role of horizontal gene transfer and lineage-specific gene loss, at least in the evolution of prokaryotes.
Results
Five largely independent approaches were employed to construct trees for completely sequenced bacterial and archaeal genomes: i) presence-absence of genomes in clusters of orthologous genes; ii) conservation of local gene order (gene pairs) among prokaryotic genomes; iii) parameters of identity distribution for probable orthologs; iv) analysis of concatenated alignments of ribosomal proteins; v) comparison of trees constructed for multiple protein families. All constructed trees support the separation of the two primary prokaryotic domains, bacteria and archaea, as well as some terminal bifurcations within the bacterial and archaeal domains. Beyond these obvious groupings, the trees made with different methods appeared to differ substantially in terms of the relative contributions of phylogenetic relationships and similarities in gene repertoires caused by similar life styles and horizontal gene transfer to the tree topology. The trees based on presence-absence of genomes in orthologous clusters and the trees based on conserved gene pairs appear to be strongly affected by gene loss and horizontal gene transfer. The trees based on identity distributions for orthologs and particularly the tree made of concatenated ribosomal protein sequences seemed to carry a stronger phylogenetic signal. The latter tree supported three potential high-level bacterial clades,: i) Chlamydia-Spirochetes, ii) Thermotogales-Aquificales (bacterial hyperthermophiles), and ii) Actinomycetes-Deinococcales-Cyanobacteria. The latter group also appeared to join the low-GC Gram-positive bacteria at a deeper tree node. These new groupings of bacteria were supported by the analysis of alternative topologies in the concatenated ribosomal protein tree using the Kishino-Hasegawa test and by a census of the topologies of 132 individual groups of orthologous proteins. Additionally, the results of this analysis put into question the sister-group relationship between the two major archaeal groups, Euryarchaeota and Crenarchaeota, and suggest instead that Euryarchaeota might be a paraphyletic group with respect to Crenarchaeota.
Conclusions
We conclude that, the extensive horizontal gene flow and lineage-specific gene loss notwithstanding, extension of phylogenetic analysis to the genome scale has the potential of uncovering deep evolutionary relationships between prokaryotic lineages.
doi:10.1186/1471-2148-1-8
PMCID: PMC60490  PMID: 11734060
6.  Genome Sequence and Comparative Analysis of the Solvent-Producing Bacterium Clostridium acetobutylicum 
Journal of Bacteriology  2001;183(16):4823-4838.
The genome sequence of the solvent-producing bacterium Clostridium acetobutylicum ATCC 824 has been determined by the shotgun approach. The genome consists of a 3.94-Mb chromosome and a 192-kb megaplasmid that contains the majority of genes responsible for solvent production. Comparison of C. acetobutylicum to Bacillus subtilis reveals significant local conservation of gene order, which has not been seen in comparisons of other genomes with similar, or, in some cases closer, phylogenetic proximity. This conservation allows the prediction of many previously undetected operons in both bacteria. However, the C. acetobutylicum genome also contains a significant number of predicted operons that are shared with distantly related bacteria and archaea but not with B. subtilis. Phylogenetic analysis is compatible with the dissemination of such operons by horizontal transfer. The enzymes of the solventogenesis pathway and of the cellulosome of C. acetobutylicum comprise a new set of metabolic capacities not previously represented in the collection of complete genomes. These enzymes show a complex pattern of evolutionary affinities, emphasizing the role of lateral gene exchange in the evolution of the unique metabolic profile of the bacterium. Many of the sporulation genes identified in B. subtilis are missing in C. acetobutylicum, which suggests major differences in the sporulation process. Thus, comparative analysis reveals both significant conservation of the genome organization and pronounced differences in many systems that reflect unique adaptive strategies of the two gram-positive bacteria.
doi:10.1128/JB.183.16.4823-4838.2001
PMCID: PMC99537  PMID: 11466286
7.  Improving the accuracy of PSI-BLAST protein database searches with composition-based statistics and other refinements 
Nucleic Acids Research  2001;29(14):2994-3005.
PSI-BLAST is an iterative program to search a database for proteins with distant similarity to a query sequence. We investigated over a dozen modifications to the methods used in PSI-BLAST, with the goal of improving accuracy in finding true positive matches. To evaluate performance we used a set of 103 queries for which the true positives in yeast had been annotated by human experts, and a popular measure of retrieval accuracy (ROC) that can be normalized to take on values between 0 (worst) and 1 (best). The modifications we consider novel improve the ROC score from 0.758 ± 0.005 to 0.895 ± 0.003. This does not include the benefits from four modifications we included in the ‘baseline’ version, even though they were not implemented in PSI-BLAST version 2.0. The improvement in accuracy was confirmed on a small second test set. This test involved analyzing three protein families with curated lists of true positives from the non-redundant protein database. The modification that accounts for the majority of the improvement is the use, for each database sequence, of a position-specific scoring system tuned to that sequence’s amino acid composition. The use of composition-based statistics is particularly beneficial for large-scale automated applications of PSI-BLAST.
PMCID: PMC55814  PMID: 11452024
8.  Cloning the human and mouse MMS19 genes and functional complementation of a yeast mms19 deletion mutant 
Nucleic Acids Research  2001;29(9):1884-1891.
The MMS19 gene of the yeast Saccharomyces cerevisiae encodes a polypeptide of unknown function which is required for both nucleotide excision repair (NER) and RNA polymerase II (RNAP II) transcription. Here we report the molecular cloning of human and mouse orthologs of the yeast MMS19 gene. Both human and Drosophila MMS19 cDNAs correct thermosensitive growth and sensitivity to killing by UV radiation in a yeast mutant deleted for the MMS19 gene, indicating functional conservation between the yeast and mammalian gene products. Alignment of the translated sequences of MMS19 from multiple eukaryotes, including mouse and human, revealed the presence of several conserved regions, including a HEAT repeat domain near the C-terminus. The presence of HEAT repeats, coupled with functional complementation of yeast mutant phenotypes by the orthologous protein from higher eukaryotes, suggests a role of Mms19 protein in the assembly of a multiprotein complex(es) required for NER and RNAP II transcription. Both the mouse and human genes are ubiquitously expressed as multiple transcripts, some of which appear to derive from alternative splicing. The ratio of different transcripts varies in several different tissue types.
PMCID: PMC37259  PMID: 11328871
9.  An apology for orthologs - or brave new memes 
Genome Biology  2001;2(4):comment1005.1-comment1005.2.
PMCID: PMC138920  PMID: 11305932
10.  Genome of the Extremely Radiation-Resistant Bacterium Deinococcus radiodurans Viewed from the Perspective of Comparative Genomics 
The bacterium Deinococcus radiodurans shows remarkable resistance to a range of damage caused by ionizing radiation, desiccation, UV radiation, oxidizing agents, and electrophilic mutagens. D. radiodurans is best known for its extreme resistance to ionizing radiation; not only can it grow continuously in the presence of chronic radiation (6 kilorads/h), but also it can survive acute exposures to gamma radiation exceeding 1,500 kilorads without dying or undergoing induced mutation. These characteristics were the impetus for sequencing the genome of D. radiodurans and the ongoing development of its use for bioremediation of radioactive wastes. Although it is known that these multiple resistance phenotypes stem from efficient DNA repair processes, the mechanisms underlying these extraordinary repair capabilities remain poorly understood. In this work we present an extensive comparative sequence analysis of the Deinococcus genome. Deinococcus is the first representative with a completely sequenced genome from a distinct bacterial lineage of extremophiles, the Thermus-Deinococcus group. Phylogenetic tree analysis, combined with the identification of several synapomorphies between Thermus and Deinococcus, supports the hypothesis that it is an ancient group with no clear affinities to any of the other known bacterial lineages. Distinctive features of the Deinococcus genome as well as features shared with other free-living bacteria were revealed by comparison of its proteome to the collection of clusters of orthologous groups of proteins. Analysis of paralogs in Deinococcus has revealed several unique protein families. In addition, specific expansions of several other families including phosphatases, proteases, acyltransferases, and Nudix family pyrophosphohydrolases were detected. Genes that potentially affect DNA repair and recombination and stress responses were investigated in detail. Some proteins appear to have been horizontally transferred from eukaryotes and are not present in other bacteria. For example, three proteins homologous to plant desiccation resistance proteins were identified, and these are particularly interesting because of the correlation between desiccation and radiation resistance. Compared to other bacteria, the D. radiodurans genome is enriched in repetitive sequences, namely, IS-like transposons and small intergenic repeats. In combination, these observations suggest that several different biological mechanisms contribute to the multiple DNA repair-dependent phenotypes of this organism.
doi:10.1128/MMBR.65.1.44-79.2001
PMCID: PMC99018  PMID: 11238985
11.  The DNA-repair protein AlkB, EGL-9, and leprecan define new families of 2-oxoglutarate- and iron-dependent dioxygenases 
Genome Biology  2001;2(3):research0007.1-research0007.8.
Background:
Protein fold recognition using sequence profile searches frequently allows prediction of the structure and biochemical mechanisms of proteins with an important biological function but unknown biochemical activity. Here we describe such predictions resulting from an analysis of the 2-oxoglutarate (2OG) and Fe(II)-dependent oxygenases, a class of enzymes that are widespread in eukaryotes and bacteria and catalyze a variety of reactions typically involving the oxidation of an organic substrate using a dioxygen molecule.
Results:
We employ sequence profile analysis to show that the DNA repair protein AlkB, the extracellular matrix protein leprecan, the disease-resistance-related protein EGL-9 and several uncharacterized proteins define novel families of enzymes of the 2OG-Fe(II) oxygenase superfamily. The identification of AlkB as a member of the 2OG-Fe(II) oxygenase superfamily suggests that this protein catalyzes oxidative detoxification of alkylated bases. More distant homologs of AlkB were detected in eukaryotes and in plant RNA viruses, leading to the hypothesis that these proteins might be involved in RNA demethylation. The EGL-9 protein from Caenorhabditis elegans is necessary for normal muscle function and its inactivation results in resistance against paralysis induced by the Pseudomonas aeruginosa toxin. EGL-9 and leprecan are predicted to be novel protein hydroxylases that might be involved in the generation of substrates for protein glycosylation.
Conclusions:
Here, using sequence profile searches, we show that several previously undetected protein families contain 2OG-Fe(II) oxygenase fold. This allows us to predict the catalytic activity for a wide range of biologically important, but biochemically uncharacterized proteins from eukaryotes and bacteria.
PMCID: PMC30706  PMID: 11276424
12.  The COG database: new developments in phylogenetic classification of proteins from complete genomes 
Nucleic Acids Research  2001;29(1):22-28.
The database of Clusters of Orthologous Groups of proteins (COGs), which represents an attempt on a phylogenetic classification of the proteins encoded in complete genomes, currently consists of 2791 COGs including 45 350 proteins from 30 genomes of bacteria, archaea and the yeast Saccharomyces cerevisiae (http://www.ncbi.nlm.nih.gov/COG). In addition, a supplement to the COGs is available, in which proteins encoded in the genomes of two multicellular eukaryotes, the nematode Caenorhabditis elegans and the fruit fly Drosophila melanogaster, and shared with bacteria and/or archaea were included. The new features added to the COG database include information pages with structural and functional details on each COG and literature references, improvements of the COGNITOR program that is used to fit new proteins into the COGs, and classification of genomes and COGs constructed by using principal component analysis.
PMCID: PMC29819  PMID: 11125040

Results 1-12 (12)