Search tips
Search criteria

Results 1-10 (10)

Clipboard (0)
Year of Publication
1.  The COG database: an updated version includes eukaryotes 
BMC Bioinformatics  2003;4:41.
The availability of multiple, essentially complete genome sequences of prokaryotes and eukaryotes spurred both the demand and the opportunity for the construction of an evolutionary classification of genes from these genomes. Such a classification system based on orthologous relationships between genes appears to be a natural framework for comparative genomics and should facilitate both functional annotation of genomes and large-scale evolutionary studies.
We describe here a major update of the previously developed system for delineation of Clusters of Orthologous Groups of proteins (COGs) from the sequenced genomes of prokaryotes and unicellular eukaryotes and the construction of clusters of predicted orthologs for 7 eukaryotic genomes, which we named KOGs after eukaryotic orthologous groups. The COG collection currently consists of 138,458 proteins, which form 4873 COGs and comprise 75% of the 185,505 (predicted) proteins encoded in 66 genomes of unicellular organisms. The eukaryotic orthologous groups (KOGs) include proteins from 7 eukaryotic genomes: three animals (the nematode Caenorhabditis elegans, the fruit fly Drosophila melanogaster and Homo sapiens), one plant, Arabidopsis thaliana, two fungi (Saccharomyces cerevisiae and Schizosaccharomyces pombe), and the intracellular microsporidian parasite Encephalitozoon cuniculi. The current KOG set consists of 4852 clusters of orthologs, which include 59,838 proteins, or ~54% of the analyzed eukaryotic 110,655 gene products. Compared to the coverage of the prokaryotic genomes with COGs, a considerably smaller fraction of eukaryotic genes could be included into the KOGs; addition of new eukaryotic genomes is expected to result in substantial increase in the coverage of eukaryotic genomes with KOGs. Examination of the phyletic patterns of KOGs reveals a conserved core represented in all analyzed species and consisting of ~20% of the KOG set. This conserved portion of the KOG set is much greater than the ubiquitous portion of the COG set (~1% of the COGs). In part, this difference is probably due to the small number of included eukaryotic genomes, but it could also reflect the relative compactness of eukaryotes as a clade and the greater evolutionary stability of eukaryotic genomes.
The updated collection of orthologous protein sets for prokaryotes and eukaryotes is expected to be a useful platform for functional annotation of newly sequenced genomes, including those of complex eukaryotes, and genome-wide evolutionary studies.
PMCID: PMC222959  PMID: 12969510
2.  Evolution of mosaic operons by horizontal gene transfer and gene displacement in situ 
Genome Biology  2003;4(9):R55.
Comparative genomics and phylogenetic analysis have been used to examine horizontal transfer of entire operons versus displacement of individual genes within operons by horizontally acquired orthologs and independent assembly of the same or similar operons from genes with different phylogenetic affinities.
Shuffling and disruption of operons and horizontal gene transfer are major contributions to the new, dynamic view of prokaryotic evolution. Under the 'selfish operon' hypothesis, operons are viewed as mobile genetic entities that are constantly disseminated via horizontal gene transfer, although their retention could be favored by the advantage of coregulation of functionally linked genes. Here we apply comparative genomics and phylogenetic analysis to examine horizontal transfer of entire operons versus displacement of individual genes within operons by horizontally acquired orthologs and independent assembly of the same or similar operons from genes with different phylogenetic affinities.
Since a substantial number of operons have been identified experimentally in only a few model bacteria, evolutionarily conserved gene strings were analyzed as surrogates of operons. The phylogenetic affinities within these predicted operons were assessed first by sequence similarity analysis and then by phylogenetic analysis, including statistical tests of tree topology. Numerous cases of apparent horizontal transfer of entire operons were detected. However, it was shown that apparent horizontal transfer of individual genes or arrays of genes within operons is not uncommon either and results in xenologous gene displacement in situ, that is, displacement of an ancestral gene by a horizontally transferred ortholog from a taxonomically distant organism without change of the local gene organization. On rarer occasions, operons might have evolved via independent assembly, in part from horizontally acquired genes.
The discovery of in situ gene displacement shows that combination of rampant horizontal gene transfer with selection for preservation of operon structure provides for events in prokaryotic evolution that, a priori, seem improbable. These findings also emphasize that not all aspects of operon evolution are selfish, with operon integrity maintained by purifying selection at the organism level.
PMCID: PMC193655  PMID: 12952534
3.  Getting positive about selection 
Genome Biology  2003;4(8):331.
A report on the 68th Symposium on Quantitative Biology, 'The Genome of Homo Sapiens', Cold Spring Harbor, USA, 28 May-2 June 2003.
A report on the 68th Symposium on Quantitative Biology, The Genome of Homo Sapiens', Cold Spring Harbor, USA, 28 May-2 June 2003.
PMCID: PMC193638  PMID: 12914654
4.  Comparative genomics of archaea: how much have we learned in six years, and what's next? 
Genome Biology  2003;4(8):115.
With 16 complete archaeal genomes sequenced to date, comparative genomics has revealed a conserved core of 313 genes that are represented in all sequenced archaeal genomes, plus a variable 'shell' that is prone to lineage-specific gene loss and horizontal gene exchange.
Archaea comprise one of the three distinct domains of life (with bacteria and eukaryotes). With 16 complete archaeal genomes sequenced to date, comparative genomics has revealed a conserved core of 313 genes that are represented in all sequenced archaeal genomes, plus a variable 'shell' that is prone to lineage-specific gene loss and horizontal gene exchange. The majority of archaeal genes have not been experimentally characterized, but novel functional pathways have been predicted.
PMCID: PMC193635  PMID: 12914651
6.  The rhomboids: a nearly ubiquitous family of intramembrane serine proteases that probably evolved by multiple ancient horizontal gene transfers 
Genome Biology  2003;4(3):R19.
The near-universal presence of the rhomboid family in bacteria, archaea and eukaryotes appears to suggest that this protein is part of the heritage of the last universal common ancestor, phylogenetic tree analysis indicates a likely bacterial origin with subsequent dissemination by horizontal gene transfer.
The rhomboid family of polytopic membrane proteins shows a level of evolutionary conservation unique among membrane proteins. They are present in nearly all the sequenced genomes of archaea, bacteria and eukaryotes, with the exception of several species with small genomes. On the basis of experimental studies with the developmental regulator rhomboid from Drosophila and the AarA protein from the bacterium Providencia stuartii, the rhomboids are thought to be intramembrane serine proteases whose signaling function is conserved in eukaryotes and prokaryotes.
Phylogenetic tree analysis carried out using several independent methods for tree constructions and the corresponding statistical tests suggests that, despite its broad distribution in all three superkingdoms, the rhomboid family was not present in the last universal common ancestor of extant life forms. Instead, we propose that rhomboids evolved in bacteria and have been acquired by archaea and eukaryotes through several independent horizontal gene transfers. In eukaryotes, two distinct, ancient acquisitions apparently gave rise to the two major subfamilies, typified by rhomboid and PARL (presenilins-associated rhomboid-like protein), respectively. Subsequent evolution of the rhomboid family in eukaryotes proceeded by multiple duplications and functional diversification through the addition of extra transmembrane helices and other domains in different orientations relative to the conserved core that harbors the protease activity.
Although the near-universal presence of the rhomboid family in bacteria, archaea and eukaryotes appears to suggest that this protein is part of the heritage of the last universal common ancestor, phylogenetic tree analysis indicates a likely bacterial origin with subsequent dissemination by horizontal gene transfer. This emphasizes the importance of explicit phylogenetic analysis for the reconstruction of ancestral life forms. A hypothetical scenario for the origin of intracellular membrane proteases from membrane transporters is proposed.
PMCID: PMC153459  PMID: 12620104
7.  The 64-Kilodalton Capsid Protein Homolog of Beet Yellows Virus Is Required for Assembly of Virion Tails 
Journal of Virology  2003;77(4):2377-2384.
The filamentous virion of the closterovirus Beet yellows virus (BYV) consists of a long body formed by the major capsid protein (CP) and a short tail composed of the minor capsid protein (CPm) and the virus-encoded Hsp70 homolog. By using nano-liquid chromatography-tandem mass spectrometry and biochemical analyses, we show here that the BYV 64-kDa protein (p64) is the fourth integral component of BYV virions. The N-terminal domain of p64 is exposed at the virion surface and is accessible to antibodies and mild trypsin digestion. In contrast, the C-terminal domain is embedded in the virion and is inaccessible to antibodies or trypsin. The C-terminal domain of p64 is shown to be homologous to CP and CPm. Mutation of the signature motifs of capsid proteins of filamentous RNA viruses in p64 results in the formation of tailless virions, which are unable to move from cell to cell. These results reveal the dual function of p64 in tail assembly and BYV motility and support the concept of the virion tail as a specialized device for BYV cell-to-cell movement.
PMCID: PMC141117  PMID: 12551975
8.  Evolutionary connection between the catalytic subunits of DNA-dependent RNA polymerases and eukaryotic RNA-dependent RNA polymerases and the origin of RNA polymerases 
The eukaryotic RNA-dependent RNA polymerase (RDRP) is involved in the amplification of regulatory microRNAs during post-transcriptional gene silencing. This enzyme is highly conserved in most eukaryotes but is missing in archaea and bacteria. No evolutionary relationship between RDRP and other polymerases has been reported so far, hence the origin of this eukaryote-specific polymerase remains a mystery.
Using extensive sequence profile searches, we identified bacteriophage homologs of the eukaryotic RDRP. The comparison of the eukaryotic RDRP and their homologs from bacteriophages led to the delineation of the conserved portion of these enzymes, which is predicted to harbor the catalytic site. Further, detailed sequence comparison, aided by examination of the crystal structure of the DNA-dependent RNA polymerase (DDRP), showed that the RDRP and the β' subunit of DDRP (and its orthologs in archaea and eukaryotes) contain a conserved double-psi β-barrel (DPBB) domain. This DPBB domain contains the signature motif DbDGD (b is a bulky residue), which is conserved in all RDRPs and DDRPs and contributes to catalysis via a coordinated divalent cation. Apart from the DPBB domain, no similarity was detected between RDRP and DDRP, which leaves open two scenarios for the origin of RDRP: i) RDRP evolved at the onset of the evolution of eukaryotes via a duplication of the DDRP β' subunit followed by dramatic divergence that obliterated the sequence similarity outside the core catalytic domain and ii) the primordial RDRP, which consisted primarily of the DPBB domain, evolved from a common ancestor with the DDRP at a very early stage of evolution, during the RNA world era. The latter hypothesis implies that RDRP had been subsequently eliminated from cellular life forms and might have been reintroduced into the eukaryotic genomes through a bacteriophage. Sequence and structure analysis of the DDRP led to further insights into the evolution of RNA polymerases. In addition to the β' subunit, β subunit of DDRP also contains a DPBB domain, which is, however, distorted by large inserts and does not harbor a counterpart of the DbDGD motif. The DPBB domains of the two DDRP subunits together form the catalytic cleft, with the domain from the β' subunit supplying the metal-coordinating DbDGD motif and the one from the β subunit providing two lysine residues involved in catalysis. Given that the two DPBB domains of DDRP contribute completely different sets of active residues to the catalytic center, it is hypothesized that the ultimate ancestor of RNA polymerases functioned as a homodimer of a generic, RNA-binding DPBB domain. This ancestral protein probably did not have catalytic activity and served as a cofactor for a ribozyme RNA polymerase. Subsequent evolution of DDRP and RDRP involved accretion of distinct sets of additional domains. In the DDRPs, these included a RNA-binding Zn-ribbon, an AT-hook-like module and a sandwich-barrel hybrid motif (SBHM) domain. Further, lineage-specific accretion of SBHM domains and other, DDRP-specific domains is observed in bacterial DDRPs. In contrast, the orthologs of the β' subunit in archaea and eukaryotes contains a four-stranded α + β domain that is shared with the α-subunit of bacterial DDRP, eukaryotic DDRP subunit RBP11, translation factor eIF1 and type II topoisomerases. The additional domains of the RDRPs remain to be characterized.
Eukaryotic RNA-dependent RNA polymerases share the catalytic double-psi β-barrel domain, containing a signature metal-coordinating motif, with the universally conserved β' subunit of DNA-dependent RNA polymerases. Beyond this core catalytic domain, the two classes of RNA polymerases do not have common domains, suggesting early divergence from a common ancestor, with subsequent independent domain accretion. The β-subunit of DDRP contains another, highly diverged DPBB domain. The presence of two distinct DPBB domains in two subunits of DDRP is compatible with the hypothesis that the ultimate ancestor of RNA polymerases was a RNA-binding DPBB domain that had no catalytic activity but rather functioned as a homodimeric cofactor for a ribozyme polymerase.
PMCID: PMC151600  PMID: 12553882
9.  Algorithms for computing parsimonious evolutionary scenarios for genome evolution, the last universal common ancestor and dominance of horizontal gene transfer in the evolution of prokaryotes 
Comparative analysis of sequenced genomes reveals numerous instances of apparent horizontal gene transfer (HGT), at least in prokaryotes, and indicates that lineage-specific gene loss might have been even more common in evolution. This complicates the notion of a species tree, which needs to be re-interpreted as a prevailing evolutionary trend, rather than the full depiction of evolution, and makes reconstruction of ancestral genomes a non-trivial task.
We addressed the problem of constructing parsimonious scenarios for individual sets of orthologous genes given a species tree. The orthologous sets were taken from the database of Clusters of Orthologous Groups of proteins (COGs). We show that the phyletic patterns (patterns of presence-absence in completely sequenced genomes) of almost 90% of the COGs are inconsistent with the hypothetical species tree. Algorithms were developed to reconcile the phyletic patterns with the species tree by postulating gene loss, COG emergence and HGT (the latter two classes of events were collectively treated as gene gains). We prove that each of these algorithms produces a parsimonious evolutionary scenario, which can be represented as mapping of loss and gain events on the species tree. The distribution of the evolutionary events among the tree nodes substantially depends on the underlying assumptions of the reconciliation algorithm, e.g. whether or not independent gene gains (gain after loss after gain) are permitted. Biological considerations suggest that, on average, gene loss might be a more likely event than gene gain. Therefore different gain penalties were used and the resulting series of reconstructed gene sets for the last universal common ancestor (LUCA) of the extant life forms were analysed. The number of genes in the reconstructed LUCA gene sets grows as the gain penalty increases. However, qualitative examination of the LUCA versions reconstructed with different gain penalties indicates that, even with a gain penalty of 1 (equal weights assigned to a gain and a loss), the set of 572 genes assigned to LUCA might be nearly sufficient to sustain a functioning organism. Under this gain penalty value, the numbers of horizontal gene transfer and gene loss events are nearly identical. This result holds true for two alternative topologies of the species tree and even under random shuffling of the tree. Therefore, the results seem to be compatible with approximately equal likelihoods of HGT and gene loss in the evolution of prokaryotes.
The notion that gene loss and HGT are major aspects of prokaryotic evolution was supported by quantitative analysis of the mapping of the phyletic patterns of COGs onto a hypothetical species tree. Algorithms were developed for constructing parsimonious evolutionary scenarios, which include gene loss and gain events, for orthologous gene sets, given a species tree. This analysis shows, contrary to expectations, that the number of predicted HGT events that occurred during the evolution of prokaryotes might be approximately the same as the number of gene losses. The approach to the reconstruction of evolutionary scenarios employed here is conservative with regard to the detection of HGT because only patterns of gene presence-absence in sequenced genomes are taken into account. In reality, horizontal transfer might have contributed to the evolution of many other genes also, which makes it a dominant force in prokaryotic evolution.
PMCID: PMC149225  PMID: 12515582
10.  No simple dependence between protein evolution rate and the number of protein-protein interactions: only the most prolific interactors tend to evolve slowly 
It has been suggested that rates of protein evolution are influenced, to a great extent, by the proportion of amino acid residues that are directly involved in protein function. In agreement with this hypothesis, recent work has shown a negative correlation between evolutionary rates and the number of protein-protein interactions. However, the extent to which the number of protein-protein interactions influences evolutionary rates remains unclear. Here, we address this question at several different levels of evolutionary relatedness.
Manually curated data on the number of protein-protein interactions among Saccharomyces cerevisiae proteins was examined for possible correlation with evolutionary rates between S. cerevisiae and Schizosaccharomyces pombe orthologs. Only a very weak negative correlation between the number of interactions and evolutionary rate of a protein was observed. Furthermore, no relationship was found between a more general measure of the evolutionary conservation of S. cerevisiae proteins, based on the taxonomic distribution of their homologs, and the number of protein-protein interactions. However, when the proteins from yeast were assorted into discrete bins according to the number of interactions, it turned out that 6.5% of the proteins with the greatest number of interactions evolved, on average, significantly slower than the rest of the proteins. Comparisons were also performed using protein-protein interaction data obtained with high-throughput analysis of Helicobacter pylori proteins. No convincing relationship between the number of protein-protein interactions and evolutionary rates was detected, either for comparisons of orthologs from two completely sequenced H. pylori strains or for comparisons of H. pylori and Campylobacter jejuni orthologs, even when the proteins were classified into bins by the number of interactions.
The currently available comparative-genomic data do not support the hypothesis that the evolutionary rates of the majority of proteins substantially depend on the number of protein-protein interactions they are involved in. However, a small fraction of yeast proteins with the largest number of interactions (the hubs of the interaction network) tend to evolve slower than the bulk of the proteins.
PMCID: PMC140311  PMID: 12515583

Results 1-10 (10)