Search tips
Search criteria

Results 1-17 (17)

Clipboard (0)
Year of Publication
1.  Taking the First Steps towards a Standard for Reporting on Phylogenies: Minimal Information about a Phylogenetic Analysis (MIAPA) 
In the eight years since phylogenomics was introduced as the intersection of genomics and phylogenetics, the field has provided fundamental insights into gene function, genome history and organismal relationships. The utility of phylogenomics is growing with the increase in the number and diversity of taxa for which whole genome and large transcriptome sequence sets are being generated. We assert that the synergy between genomic and phylogenetic perspectives in comparative biology would be enhanced by the development and refinement of minimal reporting standards for phylogenetic analyses. Encouraged by the development of the Minimum Information About a Microarray Experiment (MIAME) standard, we propose a similar roadmap for the development of a Minimal Information About a Phylogenetic Analysis (MIAPA) standard. Key in the successful development and implementation of such a standard will be broad participation by developers of phylogenetic analysis software, phylogenetic database developers, practitioners of phylogenomics, and journal editors.
PMCID: PMC3167193  PMID: 16901231
2.  Unifying measures of gene function and evolution 
Recent genome analyses revealed intriguing correlations between variables characterizing the functioning of a gene, such as expression level (EL), connectivity of genetic and protein–protein interaction networks, and knockout effect, and variables describing gene evolution, such as sequence evolution rate (ER) and propensity for gene loss. Typically, variables within each of these classes are positively correlated, e.g. products of highly expressed genes also have a propensity to be involved in many protein–protein interactions, whereas variables between classes are negatively correlated, e.g. highly expressed genes, on average, evolve slower than weakly expressed genes. Here, we describe principal component (PC) analysis of seven genome-related variables and propose biological interpretations for the first three PCs. The first PC reflects a gene's ‘importance’, or the ‘status’ of a gene in the genomic community, with positive contributions from knockout lethality, EL, number of protein–protein interaction partners and the number of paralogues, and negative contributions from sequence ER and gene loss propensity. The next two PCs define a plane that seems to reflect the functional and evolutionary plasticity of a gene. Specifically, PC2 can be interpreted as a gene's ‘adaptability’ whereby genes with high adaptability readily duplicate, have many genetic interaction partners and tend to be non-essential. PC3 also might reflect the role of a gene in organismal adaptation albeit with a negative rather than a positive contribution of genetic interactions; we provisionally designate this PC ‘reactivity’. The interpretation of PC2 and PC3 as measures of a gene's plasticity is compatible with the observation that genes with high values of these PCs tend to be expressed in a condition- or tissue-specific manner. Functional classes of genes substantially vary in status, adaptability and reactivity, with the highest status characteristic of the translation system and cytoskeletal proteins, highest adaptability seen in cellular processes and signalling genes, and top reactivity characteristic of metabolic enzymes.
PMCID: PMC1560323  PMID: 16777745
gene expression; gene dispensability; protein–protein interaction; sequence evolution rate; gene loss; principal component analysis
3.  Evolutionary Genomics of Lactic Acid Bacteria▿  
Journal of Bacteriology  2006;189(4):1199-1208.
PMCID: PMC1797341  PMID: 17085562
4.  Kinase Activity of Overexpressed HipA Is Required for Growth Arrest and Multidrug Tolerance in Escherichia coli▿  
Journal of Bacteriology  2006;188(24):8360-8367.
Overexpression of the HipA protein of the HipBA toxin/antitoxin module leads to multidrug tolerance in Escherichia coli. HipA is a “toxin” that causes reversible dormancy, whereas HipB is an antitoxin that binds HipA and acts as a transcriptional repressor of the hipBA operon. Comparative sequence analysis shows that HipA is a member of the phosphatidylinositol 3/4-kinase superfamily. The kinase activity of HipA was examined. HipA was autophosphorylated in the presence of ATP in vitro, and the purified protein appeared to carry a single phosphate group on serine 150. Thus, HipA is a serine kinase that is at least partially phosphorylated in vivo. Overexpression of HipA caused inhibition of cell growth and increase in persister formation. Replacing conserved aspartate 309 in the conserved kinase active site or aspartate 332 in the Mg2+-binding site with glutamine produced mutant proteins that lost the ability to stop cellular growth upon overexpression. Replacing serine 150 with alanine yielded a similarly inactive protein. The mutant proteins were then examined for their ability to increase antibiotic tolerance. Cells overexpressing wild-type HipA were highly tolerant to cefotaxime, a cell wall synthesis inhibitor, to ofloxacin, a fluoroquinolone inhibitor of DNA gyrase, and to topoisomerase IV and were almost completely resistant to killing by mitomycin C, which forms DNA adducts. The mutant proteins did not protect cells from cefotaxime or ofloxacin and had an impaired ability to protect from mitomycin C. Taken together, these results suggest that the protein kinase activity of HipA is essential for persister formation.
PMCID: PMC1698217  PMID: 17041039
5.  Temporal order of evolution of DNA replication systems inferred by comparison of cellular and viral DNA polymerases 
Biology Direct  2006;1:39.
The core enzymes of the DNA replication systems show striking diversity among cellular life forms and more so among viruses. In particular, and counter-intuitively, given the central role of DNA in all cells and the mechanistic uniformity of replication, the core enzymes of the replication systems of bacteria and archaea (as well as eukaryotes) are unrelated or extremely distantly related. Viruses and plasmids, in addition, possess at least two unique DNA replication systems, namely, the protein-primed and rolling circle modalities of replication. This unexpected diversity makes the origin and evolution of DNA replication systems a particularly challenging and intriguing problem in evolutionary biology.
I propose a specific succession for the emergence of different DNA replication systems, drawing argument from the differences in their representation among viruses and other selfish replicating elements. In a striking pattern, the DNA replication systems of viruses infecting bacteria and eukaryotes are dominated by the archaeal-type B-family DNA polymerase (PolB) whereas the bacterial replicative DNA polymerase (PolC) is present only in a handful of bacteriophage genomes. There is no apparent mechanistic impediment to the involvement of the bacterial-type replication machinery in viral DNA replication. Therefore, I hypothesize that the observed, markedly unequal distribution of the replicative DNA polymerases among the known cellular and viral replication systems has a historical explanation. I propose that, among the two types of DNA replication machineries that are found in extant life forms, the archaeal-type, PolB-based system evolved first and had already given rise to a variety of diverse viruses and other selfish elements before the advent of the bacterial, PolC-based machinery. Conceivably, at that stage of evolution, the niches for DNA-viral reproduction have been already filled with viruses replicating with the help of the archaeal system, and viruses with the bacterial system never took off. I further suggest that the two other systems of DNA replication, the rolling circle mechanism and the protein-primed mechanism, which are represented in diverse selfish elements, also evolved prior to the emergence of the bacterial replication system. This hypothesis is compatible with the distinct structural affinities of PolB, which has the palm-domain fold shared with reverse transcriptases and RNA-dependent RNA polymerases, and PolC that has a distinct, unrelated nucleotidyltransferase fold. I propose that PolB is a descendant of polymerases that were involved in the replication of genetic elements in the RNA-protein world, prior to the emergence of DNA replication. By contrast, PolC might have evolved from an ancient non-templated polymerase, e.g., polyA polymerase. The proposed temporal succession of the evolving DNA replication systems does not depend on the specific scenario adopted for the evolution of cells and viruses, i.e., whether viruses are derived from cells or virus-like elements are thought to originate from a primordial gene pool. However, arguments are presented in favor of the latter scenario as the most parsimonious explanation of the evolution of DNA replication systems.
Comparative analysis of the diversity of genomic strategies and organizations of viruses and cellular life forms has the potential to open windows into the deep past of life's evolution, especially, with the regard to the origin of genome replication systems. When complemented with information on the evolution of the relevant protein folds, this comparative approach can yield credible scenarios for very early steps of evolution that otherwise appear to be out of reach.
Eric Bapteste, Patrick Forterre, and Mark Ragan.
PMCID: PMC1766352  PMID: 17176463
6.  Compensatory relationship between splice sites and exonic splicing signals depending on the length of vertebrate introns 
BMC Genomics  2006;7:311.
The signals that determine the specificity and efficiency of splicing are multiple and complex, and are not fully understood. Among other factors, the relative contributions of different mechanisms appear to depend on intron size inasmuch as long introns might hinder the activity of the spliceosome through interference with the proper positioning of the intron-exon junctions. Indeed, it has been shown that the information content of splice sites positively correlates with intron length in the nematode, Drosophila, and fungi. We explored the connections between the length of vertebrate introns, the strength of splice sites, exonic splicing signals, and evolution of flanking exons.
A compensatory relationship is shown to exist between different types of signals, namely, the splice sites and the exonic splicing enhancers (ESEs). In the range of relatively short introns (approximately, < 1.5 kilobases in length), the enhancement of the splicing signals for longer introns was manifest in the increased concentration of ESEs. In contrast, for longer introns, this effect was not detectable, and instead, an increase in the strength of the donor and acceptor splice sites was observed. Conceivably, accumulation of A-rich ESE motifs beyond a certain limit is incompatible with functional constraints operating at the level of protein sequence evolution, which leads to compensation in the form of evolution of the splice sites themselves toward greater strength. In addition, however, a correlation between sequence conservation in the exon ends and intron length, particularly, in synonymous positions, was observed throughout the entire length range of introns. Thus, splicing signals other than the currently defined ESEs, i.e., potential new classes of ESEs, might exist in exon sequences, particularly, those that flank long introns.
Several weak but statistically significant correlations were observed between vertebrate intron length, splice site strength, and potential exonic splicing signals. Taken together, these findings attest to a compensatory relationship between splice sites and exonic splicing signals, depending on intron length.
PMCID: PMC1713244  PMID: 17156453
7.  Long intervals of stasis punctuated by bursts of positive selection in the seasonal evolution of influenza A virus 
Biology Direct  2006;1:34.
The interpandemic evolution of the influenza A virus hemagglutinin (HA) protein is commonly considered a paragon of rapid evolutionary change under positive selection in which amino acid replacements are fixed by virtue of their effect on antigenicity, enabling the virus to evade immune surveillance.
We performed phylogenetic analyses of the recently obtained large and relatively unbiased samples of the HA sequences from 1995–2005 isolates of the H3N2 and H1N1 subtypes of influenza A virus. Unexpectedly, it was found that the evolution of H3N2 HA includes long intervals of generally neutral sequence evolution without apparent substantial antigenic change ("stasis" periods) that are characterized by an excess of synonymous over nonsynonymous substitutions per site, lack of association of amino acid replacements with epitope regions, and slow extinction of coexisting virus lineages. These long periods of stasis are punctuated by shorter intervals of rapid evolution under positive selection during which new dominant lineages quickly displace previously coexisting ones. The preponderance of positive selection during intervals of rapid evolution is supported by the dramatic excess of amino acid replacements in the epitope regions of HA compared to replacements in the rest of the HA molecule. In contrast, the stasis intervals showed a much more uniform distribution of replacements over the HA molecule, with a statistically significant difference in the rate of synonymous over nonsynonymous substitution in the epitope regions between the two modes of evolution. A number of parallel amino acid replacements – the same amino acid substitution occurring independently in different lineages – were also detected in H3N2 HA. These parallel mutations were, largely, associated with periods of rapid fitness change, indicating that there are major limitations on evolutionary pathways during antigenic change. The finding that stasis is the prevailing modality of H3N2 evolution suggests that antigenic changes that lead to an increase in fitness typically result from epistatic interactions between several amino acid substitutions in the HA and, perhaps, other viral proteins. The strains that become dominant due to increased fitness emerge from low frequency strains thanks to the last amino acid replacement that completes the set of replacements required to produce a significant antigenic change; no subset of substitutions results in a biologically significant antigenic change and corresponding fitness increase. In contrast to H3N2, no clear intervals of evolution under positive selection were detected for the H1N1 HA during the same time span. Thus, the ascendancy of H1N1 in some seasons is, most likely, caused by the drop in the relative fitness of the previously prevailing H3N2 lineages as the fraction of susceptible hosts decreases during the stasis intervals.
Numbers of synonymous and nonsynonymous substitution per site (dN/dS) in H3N2 HA
We show that the common view of the evolution of influenza virus as a rapid, positive selection-driven process is, at best, incomplete. Rather, the interpandemic evolution of influenza appears to consist of extended intervals of stasis, which are characterized by neutral sequence evolution, punctuated by shorter intervals of rapid fitness increase when evolutionary change is driven by positive selection. These observations have implications for influenza surveillance and vaccine formulation; in particular, the possibility exists that parallel amino acid replacements could serve as a predictor of new dominant strains.
Ron Fouchier (nominated by Andrey Rzhetsky), David Krakauer, Christopher Lee
PMCID: PMC1647279  PMID: 17067369
8.  Evolution of glyoxylate cycle enzymes in Metazoa: evidence of multiple horizontal transfer events and pseudogene formation 
Biology Direct  2006;1:31.
The glyoxylate cycle is thought to be present in bacteria, protists, plants, fungi, and nematodes, but not in other Metazoa. However, activity of the glyoxylate cycle enzymes, malate synthase (MS) and isocitrate lyase (ICL), in animal tissues has been reported. In order to clarify the status of the MS and ICL genes in animals and get an insight into their evolution, we undertook a comparative-genomic study.
Using sequence similarity searches, we identified MS genes in arthropods, echinoderms, and vertebrates, including platypus and opossum, but not in the numerous sequenced genomes of placental mammals. The regions of the placental mammals' genomes expected to code for malate synthase, as determined by comparison of the gene orders in vertebrate genomes, show clear similarity to the opossum MS sequence but contain stop codons, indicating that the MS gene became a pseudogene in placental mammals. By contrast, the ICL gene is undetectable in animals other than the nematodes that possess a bifunctional, fused ICL-MS gene. Examination of phylogenetic trees of MS and ICL suggests multiple horizontal gene transfer events that probably went in both directions between several bacterial and eukaryotic lineages. The strongest evidence was obtained for the acquisition of the bifunctional ICL-MS gene from an as yet unknown bacterial source with the corresponding operonic organization by the common ancestor of the nematodes.
The distribution of the MS and ICL genes in animals suggests that either they encode alternative enzymes of the glyoxylate cycle that are not orthologous to the known MS and ICL or the animal MS acquired a new function that remains to be characterized. Regardless of the ultimate solution to this conundrum, the genes for the glyoxylate cycle enzymes present a remarkable variety of evolutionary events including unusual horizontal gene transfer from bacteria to animals.
Arcady Mushegian (Stowers Institute for Medical Research), Andrey Osterman (Burnham Institute for Medical Research), Chris Ponting (Oxford University).
PMCID: PMC1630690  PMID: 17059607
9.  Mathematical modeling of tumor therapy with oncolytic viruses: effects of parametric heterogeneity on cell dynamics 
Biology Direct  2006;1:30.
One of the mechanisms that ensure cancer robustness is tumor heterogeneity, and its effects on tumor cells dynamics have to be taken into account when studying cancer progression. There is no unifying theoretical framework in mathematical modeling of carcinogenesis that would account for parametric heterogeneity.
Here we formulate a modeling approach that naturally takes stock of inherent cancer cell heterogeneity and illustrate it with a model of interaction between a tumor and an oncolytic virus. We show that several phenomena that are absent in homogeneous models, such as cancer recurrence, tumor dormancy, and others, appear in heterogeneous setting. We also demonstrate that, within the applied modeling framework, to overcome the adverse effect of tumor cell heterogeneity on the outcome of cancer treatment, a heterogeneous population of an oncolytic virus must be used. Heterogeneity in parameters of the model, such as tumor cell susceptibility to virus infection and the ability of an oncolytic virus to infect tumor cells, can lead to complex, irregular evolution of the tumor. Thus, quasi-chaotic behavior of the tumor-virus system can be caused not only by random perturbations but also by the heterogeneity of the tumor and the virus.
The modeling approach described here reveals the importance of tumor cell and virus heterogeneity for the outcome of cancer therapy. It should be straightforward to apply these techniques to mathematical modeling of other types of anticancer therapy.
Leonid Hanin (nominated by Arcady Mushegian), Natalia Komarova (nominated by Orly Alter), and David Krakauer.
PMCID: PMC1622743  PMID: 17018145
10.  The ancient Virus World and evolution of cells 
Biology Direct  2006;1:29.
Recent advances in genomics of viruses and cellular life forms have greatly stimulated interest in the origins and evolution of viruses and, for the first time, offer an opportunity for a data-driven exploration of the deepest roots of viruses. Here we briefly review the current views of virus evolution and propose a new, coherent scenario that appears to be best compatible with comparative-genomic data and is naturally linked to models of cellular evolution that, from independent considerations, seem to be the most parsimonious among the existing ones.
Several genes coding for key proteins involved in viral replication and morphogenesis as well as the major capsid protein of icosahedral virions are shared by many groups of RNA and DNA viruses but are missing in cellular life forms. On the basis of this key observation and the data on extensive genetic exchange between diverse viruses, we propose the concept of the ancient virus world. The virus world is construed as a distinct contingent of viral genes that continuously retained its identity throughout the entire history of life. Under this concept, the principal lineages of viruses and related selfish agents emerged from the primordial pool of primitive genetic elements, the ancestors of both cellular and viral genes. Thus, notwithstanding the numerous gene exchanges and acquisitions attributed to later stages of evolution, most, if not all, modern viruses and other selfish agents are inferred to descend from elements that belonged to the primordial genetic pool. In this pool, RNA viruses would evolve first, followed by retroid elements, and DNA viruses. The Virus World concept is predicated on a model of early evolution whereby emergence of substantial genetic diversity antedates the advent of full-fledged cells, allowing for extensive gene mixing at this early stage of evolution. We outline a scenario of the origin of the main classes of viruses in conjunction with a specific model of precellular evolution under which the primordial gene pool dwelled in a network of inorganic compartments. Somewhat paradoxically, under this scenario, we surmise that selfish genetic elements ancestral to viruses evolved prior to typical cells, to become intracellular parasites once bacteria and archaea arrived at the scene. Selection against excessively aggressive parasites that would kill off the host ensembles of genetic elements would lead to early evolution of temperate virus-like agents and primitive defense mechanisms, possibly, based on the RNA interference principle. The emergence of the eukaryotic cell is construed as the second melting pot of virus evolution from which the major groups of eukaryotic viruses originated as a result of extensive recombination of genes from various bacteriophages, archaeal viruses, plasmids, and the evolving eukaryotic genomes. Again, this vision is predicated on a specific model of the emergence of eukaryotic cell under which archaeo-bacterial symbiosis was the starting point of eukaryogenesis, a scenario that appears to be best compatible with the data.
The existence of several genes that are central to virus replication and structure, are shared by a broad variety of viruses but are missing from cellular genomes (virus hallmark genes) suggests the model of an ancient virus world, a flow of virus-specific genes that went uninterrupted from the precellular stage of life's evolution to this day. This concept is tightly linked to two key conjectures on evolution of cells: existence of a complex, precellular, compartmentalized but extensively mixing and recombining pool of genes, and origin of the eukaryotic cell by archaeo-bacterial fusion. The virus world concept and these models of major transitions in the evolution of cells provide complementary pieces of an emerging coherent picture of life's history.
W. Ford Doolittle, J. Peter Gogarten, and Arcady Mushegian.
PMCID: PMC1594570  PMID: 16984643
11.  Global similarity and local divergence in human and mouse gene co-expression networks 
A genome-wide comparative analysis of human and mouse gene expression patterns was performed in order to evaluate the evolutionary divergence of mammalian gene expression. Tissue-specific expression profiles were analyzed for 9,105 human-mouse orthologous gene pairs across 28 tissues. Expression profiles were resolved into species-specific coexpression networks, and the topological properties of the networks were compared between species.
At the global level, the topological properties of the human and mouse gene coexpression networks are, essentially, identical. For instance, both networks have topologies with small-world and scale-free properties as well as closely similar average node degrees, clustering coefficients, and path lengths. However, the human and mouse coexpression networks are highly divergent at the local level: only a small fraction (<10%) of coexpressed gene pair relationships are conserved between the two species. A series of controls for experimental and biological variance show that most of this divergence does not result from experimental noise. We further show that, while the expression divergence between species is genuinely rapid, expression does not evolve free from selective (functional) constraint. Indeed, the coexpression networks analyzed here are demonstrably functionally coherent as indicated by the functional similarity of coexpressed gene pairs, and this pattern is most pronounced in the conserved human-mouse intersection network. Numerous dense network clusters show evidence of dedicated functions, such as spermatogenesis and immune response, that are clearly consistent with the coherence of the expression patterns of their constituent gene members.
The dissonance between global versus local network divergence suggests that the interspecies similarity of the global network properties is of limited biological significance, at best, and that the biologically relevant aspects of the architectures of gene coexpression are specific and particular, rather than universal. Nevertheless, there is substantial evolutionary conservation of the local network structure which is compatible with the notion that gene coexpression networks are subject to purifying selection.
PMCID: PMC1601971  PMID: 16968540
12.  The origin of introns and their role in eukaryogenesis: a compromise solution to the introns-early versus introns-late debate? 
Biology Direct  2006;1:22.
Ever since the discovery of 'genes in pieces' and mRNA splicing in eukaryotes, origin and evolution of spliceosomal introns have been considered within the conceptual framework of the 'introns early' versus 'introns late' debate. The 'introns early' hypothesis, which is closely linked to the so-called exon theory of gene evolution, posits that protein-coding genes were interrupted by numerous introns even at the earliest stages of life's evolution and that introns played a major role in the origin of proteins by facilitating recombination of sequences coding for small protein/peptide modules. Under this scenario, the absence of spliceosomal introns in prokaryotes is considered to be a result of "genome streamlining". The 'introns late' hypothesis counters that spliceosomal introns emerged only in eukaryotes, and moreover, have been inserted into protein-coding genes continuously throughout the evolution of eukaryotes. Beyond the formal dilemma, the more substantial side of this debate has to do with possible roles of introns in the evolution of eukaryotes.
I argue that several lines of evidence now suggest a coherent solution to the introns-early versus introns-late debate, and the emerging picture of intron evolution integrates aspects of both views although, formally, there seems to be no support for the original version of introns-early. Firstly, there is growing evidence that spliceosomal introns evolved from group II self-splicing introns which are present, usually, in small numbers, in many bacteria, and probably, moved into the evolving eukaryotic genome from the α-proteobacterial progenitor of the mitochondria. Secondly, the concept of a primordial pool of 'virus-like' genetic elements implies that self-splicing introns are among the most ancient genetic entities. Thirdly, reconstructions of the ancestral state of eukaryotic genes suggest that the last common ancestor of extant eukaryotes had an intron-rich genome. Thus, it appears that ancestors of spliceosomal introns, indeed, have existed since the earliest stages of life's evolution, in a formal agreement with the introns-early scenario. However, there is no evidence that these ancient introns ever became widespread before the emergence of eukaryotes, hence, the central tenet of introns-early, the role of introns in early evolution of proteins, has no support. However, the demonstration that numerous introns invaded eukaryotic genes at the outset of eukaryotic evolution and that subsequent intron gain has been limited in many eukaryotic lineages implicates introns as an ancestral feature of eukaryotic genomes and refutes radical versions of introns-late. Perhaps, most importantly, I argue that the intron invasion triggered other pivotal events of eukaryogenesis, including the emergence of the spliceosome, the nucleus, the linear chromosomes, the telomerase, and the ubiquitin signaling system. This concept of eukaryogenesis, in a sense, revives some tenets of the exon hypothesis, by assigning to introns crucial roles in eukaryotic evolutionary innovation.
The scenario of the origin and evolution of introns that is best compatible with the results of comparative genomics and theoretical considerations goes as follows: self-splicing introns since the earliest stages of life's evolution – numerous spliceosomal introns invading genes of the emerging eukaryote during eukaryogenesis – subsequent lineage-specific loss and gain of introns. The intron invasion, probably, spawned by the mitochondrial endosymbiont, might have critically contributed to the emergence of the principal features of the eukaryotic cell. This scenario combines aspects of the introns-early and introns-late views.
this article was reviewed by W. Ford Doolittle, James Darnell (nominated by W. Ford Doolittle), William Martin, and Anthony Poole.
PMCID: PMC1570339  PMID: 16907971
13.  A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action 
Biology Direct  2006;1:7.
All archaeal and many bacterial genomes contain Clustered Regularly Interspaced Short Palindrome Repeats (CRISPR) and variable arrays of the CRISPR-associated (cas) genes that have been previously implicated in a novel form of DNA repair on the basis of comparative analysis of their protein product sequences. However, the proximity of CRISPR and cas genes strongly suggests that they have related functions which is hard to reconcile with the repair hypothesis.
The protein sequences of the numerous cas gene products were classified into ~25 distinct protein families; several new functional and structural predictions are described. Comparative-genomic analysis of CRISPR and cas genes leads to the hypothesis that the CRISPR-Cas system (CASS) is a mechanism of defense against invading phages and plasmids that functions analogously to the eukaryotic RNA interference (RNAi) systems. Specific functional analogies are drawn between several components of CASS and proteins involved in eukaryotic RNAi, including the double-stranded RNA-specific helicase-nuclease (dicer), the endonuclease cleaving target mRNAs (slicer), and the RNA-dependent RNA polymerase. However, none of the CASS components is orthologous to its apparent eukaryotic functional counterpart. It is proposed that unique inserts of CRISPR, some of which are homologous to fragments of bacteriophage and plasmid genes, function as prokaryotic siRNAs (psiRNA), by base-pairing with the target mRNAs and promoting their degradation or translation shutdown. Specific hypothetical schemes are developed for the functioning of the predicted prokaryotic siRNA system and for the formation of new CRISPR units with unique inserts encoding psiRNA conferring immunity to the respective newly encountered phages or plasmids. The unique inserts in CRISPR show virtually no similarity even between closely related bacterial strains which suggests their rapid turnover, on evolutionary scale. Corollaries of this finding are that, even among closely related prokaryotes, the most commonly encountered phages and plasmids are different and/or that the dominant phages and plasmids turn over rapidly.
We proposed previously that Cas proteins comprise a novel DNA repair system. The association of the cas genes with CRISPR and, especially, the presence, in CRISPR units, of unique inserts homologous to phage and plasmid genes make us abandon this hypothesis. It appears most likely that CASS is a prokaryotic system of defense against phages and plasmids that functions via the RNAi mechanism. The functioning of this system seems to involve integration of fragments of foreign genes into archaeal and bacterial chromosomes yielding heritable immunity to the respective agents. However, it appears that this inheritance is extremely unstable on the evolutionary scale such that the repertoires of unique psiRNAs are completely replaced even in closely related prokaryotes, presumably, in response to rapidly changing repertoires of dominant phages and plasmids.
This article was reviewed by: Eric Bapteste, Patrick Forterre, and Martijn Huynen.
Open peer review
Reviewed by Eric Bapteste, Patrick Forterre, and Martijn Huynen.
For the full reviews, please go to the Reviewers' comments section.
PMCID: PMC1462988  PMID: 16545108
14.  Mathematical modeling of tumor therapy with oncolytic viruses: Regimes with complete tumor elimination within the framework of deterministic models 
Biology Direct  2006;1:6.
Oncolytic viruses that specifically target tumor cells are promising anti-cancer therapeutic agents. The interaction between an oncolytic virus and tumor cells is amenable to mathematical modeling using adaptations of techniques employed previously for modeling other types of virus-cell interaction.
A complete parametric analysis of dynamic regimes of a conceptual model of anti-tumor virus therapy is presented. The role and limitations of mass-action kinetics are discussed. A functional response, which is a function of the ratio of uninfected to infected tumor cells, is proposed to describe the spread of the virus infection in the tumor. One of the main mathematical features of ratio-dependent models is that the origin is a complicated equilibrium point whose characteristics determine the main properties of the model. It is shown that, in a certain area of parameter values, the trajectories of the model form a family of homoclinics to the origin (so-called elliptic sector). Biologically, this means that both infected and uninfected tumor cells can be eliminated with time, and complete recovery is possible as a result of the virus therapy within the framework of deterministic models.
Our model, in contrast to the previously published models of oncolytic virus-tumor interaction, exhibits all possible outcomes of oncolytic virus infection, i.e., no effect on the tumor, stabilization or reduction of the tumor load, and complete elimination of the tumor. The parameter values that result in tumor elimination, which is, obviously, the desired outcome, are compatible with some of the available experimental data.
This article was reviewed by Mikhail Blagosklonny, David Krakauer, Erik Van Nimwegen, and Ned Wingreen.
PMCID: PMC1403749  PMID: 16542009
15.  Signs of positive selection of somatic mutations in human cancers detected by EST sequence analysis 
BMC Cancer  2006;6:36.
Carcinogenesis typically involves multiple somatic mutations in caretaker (DNA repair) and gatekeeper (tumor suppressors and oncogenes) genes. Analysis of mutation spectra of the tumor suppressor that is most commonly mutated in human cancers, p53, unexpectedly suggested that somatic evolution of the p53 gene during tumorigenesis is dominated by positive selection for gain of function. This conclusion is supported by accumulating experimental evidence of evolution of new functions of p53 in tumors. These findings prompted a genome-wide analysis of possible positive selection during tumor evolution.
A comprehensive analysis of probable somatic mutations in the sequences of Expressed Sequence Tags (ESTs) from malignant tumors and normal tissues was performed in order to access the prevalence of positive selection in cancer evolution. For each EST, the numbers of synonymous and non-synonymous substitutions were calculated. In order to identify genes with a signature of positive selection in cancers, these numbers were compared to: i) expected numbers and ii) the numbers for the respective genes in the ESTs from normal tissues.
We identified 112 genes with a signature of positive selection in cancers, i.e., a significantly elevated ratio of non-synonymous to synonymous substitutions, in tumors as compared to 37 such genes in an approximately equal-sized EST collection from normal tissues. A substantial fraction of the tumor-specific positive-selection candidates have experimentally demonstrated or strongly predicted links to cancer.
The results of EST analysis should be interpreted with extreme caution given the noise introduced by sequencing errors and undetected polymorphisms. Furthermore, an inherent limitation of EST analysis is that multiple mutations amenable to statistical analysis can be detected only in relatively highly expressed genes. Nevertheless, the present results suggest that positive selection might affect a substantial number of genes during tumorigenic somatic evolution.
PMCID: PMC1431556  PMID: 16469093
16.  Mutational hotspots in the TP53 gene and, possibly, other tumor suppressors evolve by positive selection 
Biology Direct  2006;1:4.
The mutation spectra of the TP53 gene and other tumor suppressors contain multiple hotspots, i.e., sites of non-random, frequent mutation in tumors and/or the germline. The origin of the hotspots remains unclear, the general view being that they represent highly mutable nucleotide contexts which likely reflect effects of different endogenous and exogenous factors shaping the mutation process in specific tissues. The origin of hotspots is of major importance because it has been suggested that mutable contexts could be used to infer mechanisms of mutagenesis contributing to tumorigenesis.
Here we apply three independent tests, accounting for non-uniform base compositions in synonymous and non-synonymous sites, to test whether the hotspots emerge via selection or due to mutational bias. All three tests consistently indicate that the hotspots in the TP53 gene evolve, primarily, via positive selection. The results were robust to the elimination of the highly mutable CpG dinucleotides. By contrast, only one, the least conservative test reveals the signature of positive selection in BRCA1, BRCA2, and p16. Elucidation of the origin of the hotspots in these genes requires more data on somatic mutations in tumors.
The results of this analysis seem to indicate that positive selection for gain-of-function in tumor suppressor genes is an important aspect of tumorigenesis, blurring the distinction between tumor suppressors and oncogenes.
This article was reviewed by Sandor Pongor, Christopher Lee and Mikhail Blagosklonny.
PMCID: PMC1403748  PMID: 16542006
17.  A community experiment with fully open and published peer review 
Biology Direct  2006;1:1.
PMCID: PMC1397803  PMID: 16542032

Results 1-17 (17)