Search tips
Search criteria

Results 1-25 (31)

Clipboard (0)
Year of Publication
more »
1.  Casposons: a new superfamily of self-synthesizing DNA transposons at the origin of prokaryotic CRISPR-Cas immunity 
BMC Biology  2014;12:36.
Diverse transposable elements are abundant in genomes of cellular organisms from all three domains of life. Although transposons are often regarded as junk DNA, a growing body of evidence indicates that they are behind some of the major evolutionary innovations. With the growth in the number and diversity of sequenced genomes, previously unnoticed mobile elements continue to be discovered.
We describe a new superfamily of archaeal and bacterial mobile elements which we denote casposons because they encode Cas1 endonuclease, a key enzyme of the CRISPR-Cas adaptive immunity systems of archaea and bacteria. The casposons share several features with self-synthesizing eukaryotic DNA transposons of the Polinton/Maverick class, including terminal inverted repeats and genes for B family DNA polymerases. However, unlike any other known mobile elements, the casposons are predicted to rely on Cas1 for integration and excision, via a mechanism similar to the integration of new spacers into CRISPR loci. We identify three distinct families of casposons that differ in their gene repertoires and evolutionary provenance of the DNA polymerases. Deep branching of the casposon-encoded endonuclease in the Cas1 phylogeny suggests that casposons played a pivotal role in the emergence of CRISPR-Cas immunity.
The casposons are a novel superfamily of mobile elements, the first family of putative self-synthesizing transposons discovered in prokaryotes. The likely contribution of capsosons to the evolution of CRISPR-Cas parallels the involvement of the RAG1 transposase in vertebrate immunoglobulin gene rearrangement, suggesting that recruitment of endonucleases from mobile elements as ready-made tools for genome manipulation is a general route of evolution of adaptive immunity.
PMCID: PMC4046053  PMID: 24884953
Mobile genetic elements; CRISPR-Cas system; Adaptive immunity; Transposons; Archaea; DNA polymerases
2.  CRISPR-Cas: an adaptive immunity system in prokaryotes 
Most of the archaea and numerous bacteria possess an elaborate system of adaptive immunity to mobile genetic elements known as the CRISPR (clustered regularly interspaced short palindromic repeats)-associated system (CRISPR-Cas), which consists of arrays of short repeats interspersed with unique DNA spacers and adjacent operons encompassing CRISPR-associated (cas) genes with predicted and, in some cases, experimentally validated nuclease, helicase, and polymerase activities. The system functions by integrating fragments of alien DNA between the repeats and employing their transcripts to degrade the DNA of the respective invading elements via an RNA interference-like mechanism. The CRISPR-Cas system is a case of apparent Lamarckian inheritance.
PMCID: PMC2884157  PMID: 20556198
3.  Two C or not two C: recurrent disruption of Zn-ribbons, gene duplication, lineage-specific gene loss, and horizontal gene transfer in evolution of bacterial ribosomal proteins 
Genome Biology  2001;2(9):research0033.1-research0033.14.
Ribosomal proteins are encoded in all genomes of cellular life forms and are, generally, well conserved during evolution. In prokaryotes, the genes for most ribosomal proteins are clustered in several highly conserved operons, which ensures efficient co-regulation of their expression. Duplications of ribosomal-protein genes are infrequent, and given their coordinated expression and functioning, it is generally assumed that ribosomal-protein genes are unlikely to undergo horizontal transfer. However, with the accumulation of numerous complete genome sequences of prokaryotes, several paralogous pairs of ribosomal protein genes have been identified. Here we analyze all such cases and attempt to reconstruct the evolutionary history of these ribosomal proteins.
Complete bacterial genomes were searched for duplications of ribosomal proteins. Ribosomal proteins L36, L33, L31, S14 are each duplicated in several bacterial genomes and ribosomal proteins L11, L28, L7/L12, S1, S15, S18 are so far duplicated in only one genome each. Sequence analysis of the four ribosomal proteins, for which paralogs were detected in several genomes, two of the ribosomal proteins duplicated in one genome (L28 and S18), and the ribosomal protein L32 showed that each of them comes in two distinct versions. One form contains a predicted metal-binding Zn-ribbon that consists of four conserved cysteines (in some cases replaced by histidines), whereas, in the second form, these metal-chelating residues are completely or partially replaced. Typically, genomes containing paralogous genes for these ribosomal proteins encode both versions, designated C+ and C-, respectively. Analysis of phylogenetic trees for these seven ribosomal proteins, combined with comparison of genomic contexts for the respective genes, indicates that in most, if not all cases, their evolution involved a duplication of the ancestral C+ form early in bacterial evolution, with subsequent alternative loss of the C+ and C- forms in different lineages. Additionally, evidence was obtained for a role of horizontal gene transfer in the evolution of these ribosomal proteins, with multiple cases of gene displacement 'in situ', that is, without a change of the gene order in the recipient genome.
A more complex picture of evolution of bacterial ribosomal proteins than previously suspected is emerging from these results, with major contributions of lineage-specific gene loss and horizontal gene transfer. The recurrent theme of emergence and disruption of Zn-ribbons in bacterial ribosomal proteins awaits a functional interpretation.
PMCID: PMC56895  PMID: 11574053
4.  Comprehensive analysis of the HEPN superfamily: identification of novel roles in intra-genomic conflicts, defense, pathogenesis and RNA processing 
Biology Direct  2013;8:15.
The major role of enzymatic toxins that target nucleic acids in biological conflicts at all levels has become increasingly apparent thanks in large part to the advances of comparative genomics. Typically, toxins evolve rapidly hampering the identification of these proteins by sequence analysis. Here we analyze an unexpectedly widespread superfamily of toxin domains most of which possess RNase activity.
The HEPN superfamily is comprised of all α-helical domains that were first identified as being associated with DNA polymerase β-type nucleotidyltransferases in prokaryotes and animal Sacsin proteins. Using sensitive sequence and structure comparison methods, we vastly extend the HEPN superfamily by identifying numerous novel families and by detecting diverged HEPN domains in several known protein families. The new HEPN families include the RNase LS and LsoA catalytic domains, KEN domains (e.g. RNaseL and Ire1) and the RNase domains of RloC and PrrC. The majority of HEPN domains contain conserved motifs that constitute a metal-independent endoRNase active site. Some HEPN domains lacking this motif probably function as non-catalytic RNA-binding domains, such as in the case of the mannitol repressor MtlR. Our analysis shows that HEPN domains function as toxins that are shared by numerous systems implicated in intra-genomic, inter-genomic and intra-organismal conflicts across the three domains of cellular life. In prokaryotes HEPN domains are essential components of numerous toxin-antitoxin (TA) and abortive infection (Abi) systems and in addition are tightly associated with many restriction-modification (R-M) and CRISPR-Cas systems, and occasionally with other defense systems such as Pgl and Ter. We present evidence of multiple modes of action of HEPN domains in these systems, which include direct attack on viral RNAs (e.g. LsoA and RNase LS) in conjunction with other RNase domains (e.g. a novel RNase H fold domain, NamA), suicidal or dormancy-inducing attack on self RNAs (RM systems and possibly CRISPR-Cas systems), and suicidal attack coupled with direct interaction with phage components (Abi systems). These findings are compatible with the hypothesis on coupling of pathogen-targeting (immunity) and self-directed (programmed cell death and dormancy induction) responses in the evolution of robust antiviral strategies. We propose that altruistic cell suicide mediated by HEPN domains and other functionally similar RNases was essential for the evolution of kin and group selection and cell cooperation. HEPN domains were repeatedly acquired by eukaryotes and incorporated into several core functions such as endonucleolytic processing of the 5.8S-25S/28S rRNA precursor (Las1), a novel ER membrane-associated RNA degradation system (C6orf70), sensing of unprocessed transcripts at the nuclear periphery (Swt1). Multiple lines of evidence suggest that, similar to prokaryotes, HEPN proteins were recruited to antiviral, antitransposon, apoptotic systems or RNA-level response to unfolded proteins (Sacsin and KEN domains) in several groups of eukaryotes.
Extensive sequence and structure comparisons reveal unexpectedly broad presence of the HEPN domain in an enormous variety of defense and stress response systems across the tree of life. In addition, HEPN domains have been recruited to perform essential functions, in particular in eukaryotic rRNA processing. These findings are expected to stimulate experiments that could shed light on diverse cellular processes across the three domains of life.
This article was reviewed by Martijn Huynen, Igor Zhulin and Nick Grishin
PMCID: PMC3710099  PMID: 23768067
5.  Insights into archaeal evolution and symbiosis from the genomes of a nanoarchaeon and its inferred crenarchaeal host from Obsidian Pool, Yellowstone National Park 
Biology Direct  2013;8:9.
A single cultured marine organism, Nanoarchaeum equitans, represents the Nanoarchaeota branch of symbiotic Archaea, with a highly reduced genome and unusual features such as multiple split genes.
The first terrestrial hyperthermophilic member of the Nanoarchaeota was collected from Obsidian Pool, a thermal feature in Yellowstone National Park, separated by single cell isolation, and sequenced together with its putative host, a Sulfolobales archaeon. Both the new Nanoarchaeota (Nst1) and N. equitans lack most biosynthetic capabilities, and phylogenetic analysis of ribosomal RNA and protein sequences indicates that the two form a deep-branching archaeal lineage. However, the Nst1 genome is more than 20% larger, and encodes a complete gluconeogenesis pathway as well as the full complement of archaeal flagellum proteins. With a larger genome, a smaller repertoire of split protein encoding genes and no split non-contiguous tRNAs, Nst1 appears to have experienced less severe genome reduction than N. equitans. These findings imply that, rather than representing ancestral characters, the extremely compact genomes and multiple split genes of Nanoarchaeota are derived characters associated with their symbiotic or parasitic lifestyle. The inferred host of Nst1 is potentially autotrophic, with a streamlined genome and simplified central and energetic metabolism as compared to other Sulfolobales.
Comparison of the N. equitans and Nst1 genomes suggests that the marine and terrestrial lineages of Nanoarchaeota share a common ancestor that was already a symbiont of another archaeon. The two distinct Nanoarchaeota-host genomic data sets offer novel insights into the evolution of archaeal symbiosis and parasitism, enabling further studies of the cellular and molecular mechanisms of these relationships.
This article was reviewed by Patrick Forterre, Bettina Siebers (nominated by Michael Galperin) and Purification Lopez-Garcia
PMCID: PMC3655853  PMID: 23607440
Archaea evolution; Single cell genomics; Symbiosis; Hyperthermophiles; Split genes
6.  Updated clusters of orthologous genes for Archaea: a complex ancestor of the Archaea and the byways of horizontal gene transfer 
Biology Direct  2012;7:46.
Collections of Clusters of Orthologous Genes (COGs) provide indispensable tools for comparative genomic analysis, evolutionary reconstruction and functional annotation of new genomes. Initially, COGs were made for all complete genomes of cellular life forms that were available at the time. However, with the accumulation of thousands of complete genomes, construction of a comprehensive COG set has become extremely computationally demanding and prone to error propagation, necessitating the switch to taxon-specific COG collections. Previously, we reported the collection of COGs for 41 genomes of Archaea (arCOGs). Here we present a major update of the arCOGs and describe evolutionary reconstructions to reveal general trends in the evolution of Archaea.
The updated version of the arCOG database incorporates 91% of the pangenome of 120 archaea (251,032 protein-coding genes altogether) into 10,335 arCOGs. Using this new set of arCOGs, we performed maximum likelihood reconstruction of the genome content of archaeal ancestral forms and gene gain and loss events in archaeal evolution. This reconstruction shows that the last Common Ancestor of the extant Archaea was an organism of greater complexity than most of the extant archaea, probably with over 2,500 protein-coding genes. The subsequent evolution of almost all archaeal lineages was apparently dominated by gene loss resulting in genome streamlining. Overall, in the evolution of Archaea as well as a representative set of bacteria that was similarly analyzed for comparison, gene losses are estimated to outnumber gene gains at least 4 to 1. Analysis of specific patterns of gene gain in Archaea shows that, although some groups, in particular Halobacteria, acquire substantially more genes than others, on the whole, gene exchange between major groups of Archaea appears to be largely random, with no major ‘highways’ of horizontal gene transfer.
The updated collection of arCOGs is expected to become a key resource for comparative genomics, evolutionary reconstruction and functional annotation of new archaeal genomes. Given that, in spite of the major increase in the number of genomes, the conserved core of archaeal genes appears to be stabilizing, the major evolutionary trends revealed here have a chance to stand the test of time.
This article was reviewed by (for complete reviews see the Reviewers’ Reports section): Dr. PLG, Prof. PF, Dr. PL (nominated by Prof. JPG).
PMCID: PMC3534625  PMID: 23241446
Archaea; Orthologs; Horizontal gene transfer
7.  Live virus-free or die: coupling of antivirus immunity and programmed suicide or dormancy in prokaryotes 
Biology Direct  2012;7:40.
The virus-host arms race is a major theater for evolutionary innovation. Archaea and bacteria have evolved diverse, elaborate antivirus defense systems that function on two general principles: i) immune systems that discriminate self DNA from nonself DNA and specifically destroy the foreign, in particular viral, genomes, whereas the host genome is protected, or ii) programmed cell suicide or dormancy induced by infection.
Presentation of the hypothesis
Almost all genomic loci encoding immunity systems such as CRISPR-Cas, restriction-modification and DNA phosphorothioation also encompass suicide genes, in particular those encoding known and predicted toxin nucleases, which do not appear to be directly involved in immunity. In contrast, the immunity systems do not appear to encode antitoxins found in typical toxin-antitoxin systems. This raises the possibility that components of the immunity system themselves act as reversible inhibitors of the associated toxin proteins or domains as has been demonstrated for the Escherichia coli anticodon nuclease PrrC that interacts with the PrrI restriction-modification system. We hypothesize that coupling of diverse immunity and suicide/dormancy systems in prokaryotes evolved under selective pressure to provide robustness to the antivirus response. We further propose that the involvement of suicide/dormancy systems in the coupled antivirus response could take two distinct forms:
1) induction of a dormancy-like state in the infected cell to ‘buy time’ for activation of adaptive immunity; 2) suicide or dormancy as the final recourse to prevent viral spread triggered by the failure of immunity.
Testing the hypothesis
This hypothesis entails many experimentally testable predictions. Specifically, we predict that Cas2 protein present in all cas operons is a mRNA-cleaving nuclease (interferase) that might be activated at an early stage of virus infection to enable incorporation of virus-specific spacers into the CRISPR locus or to trigger cell suicide when the immune function of CRISPR-Cas systems fails. Similarly, toxin-like activity is predicted for components of numerous other defense loci.
Implications of the hypothesis
The hypothesis implies that antivirus response in prokaryotes involves key decision-making steps at which the cell chooses the path to follow by sensing the course of virus infection.
This article was reviewed by Arcady Mushegian, Etienne Joly and Nick Grishin. For complete reviews, go to the Reviewers’ reports section.
PMCID: PMC3506569  PMID: 23151069
8.  The CMG (CDC45/RecJ, MCM, GINS) complex is a conserved component of the DNA replication system in all archaea and eukaryotes 
Biology Direct  2012;7:7.
In eukaryotes, the CMG (CDC45, MCM, GINS) complex containing the replicative helicase MCM is a key player in DNA replication. Archaeal homologs of the eukaryotic MCM and GINS proteins have been identified but until recently no homolog of the CDC45 protein was known. Two recent developments, namely the discovery of archaeal GINS-associated nuclease (GAN) that belongs to the RecJ family of the DHH hydrolase superfamily and the demonstration of homology between the DHH domains of CDC45 and RecJ, show that at least some Archaea possess a full complement of homologs of the CMG complex subunits. Here we present the results of in-depth phylogenomic analysis of RecJ homologs in archaea.
We confirm and extend the recent hypothesis that CDC45 is the eukaryotic ortholog of the bacterial and archaeal RecJ family nucleases. At least one RecJ homolog was identified in all sequenced archaeal genomes, with the single exception of Caldivirga maquilingensis. These proteins include previously unnoticed remote RecJ homologs with inactivated DHH domain in Thermoproteales. Combined with phylogenetic tree reconstruction of diverse eukaryotic, archaeal and bacterial DHH subfamilies, this analysis yields a complex scenario of RecJ family evolution in Archaea which includes independent inactivation of the nuclease domain in Crenarchaeota and Halobacteria, and loss of this domain in Methanococcales.
The archaeal complex of a CDC45/RecJ homolog, MCM and GINS is homologous and most likely functionally analogous to the eukaryotic CMG complex, and appears to be a key component of the DNA replication machinery in all Archaea. It is inferred that the last common archaeo-eukaryotic ancestor encoded a CMG complex that contained an active nuclease of the RecJ family. The inactivated RecJ homologs in several archaeal lineages most likely are dedicated structural components of replication complexes.
This article was reviewed by Prof. Patrick Forterre, Dr. Stephen John Aves (nominated by Dr. Purificacion Lopez-Garcia) and Prof. Martijn Huynen.
For the full reviews, see the Reviewers' Comments section.
PMCID: PMC3307487  PMID: 22329974
9.  Phylogenomics of prokaryotic ribosomal proteins 
Genome Biology  2011;12(Suppl 1):P30.
PMCID: PMC3439054
10.  Unification of Cas protein families and a simple scenario for the origin and evolution of CRISPR-Cas systems 
Biology Direct  2011;6:38.
The CRISPR-Cas adaptive immunity systems that are present in most Archaea and many Bacteria function by incorporating fragments of alien genomes into specific genomic loci, transcribing the inserts and using the transcripts as guide RNAs to destroy the genome of the cognate virus or plasmid. This RNA interference-like immune response is mediated by numerous, diverse and rapidly evolving Cas (CRISPR-associated) proteins, several of which form the Cascade complex involved in the processing of CRISPR transcripts and cleavage of the target DNA. Comparative analysis of the Cas protein sequences and structures led to the classification of the CRISPR-Cas systems into three Types (I, II and III).
A detailed comparison of the available sequences and structures of Cas proteins revealed several unnoticed homologous relationships. The Repeat-Associated Mysterious Proteins (RAMPs) containing a distinct form of the RNA Recognition Motif (RRM) domain, which are major components of the CRISPR-Cas systems, were classified into three large groups, Cas5, Cas6 and Cas7. Each of these groups includes many previously uncharacterized proteins now shown to adopt the RAMP structure. Evidence is presented that large subunits contained in most of the CRISPR-Cas systems could be homologous to Cas10 proteins which contain a polymerase-like Palm domain and are predicted to be enzymatically active in Type III CRISPR-Cas systems but inactivated in Type I systems. These findings, the fact that the CRISPR polymerases, RAMPs and Cas2 all contain core RRM domains, and distinct gene arrangements in the three types of CRISPR-Cas systems together provide for a simple scenario for origin and evolution of the CRISPR-Cas machinery. Under this scenario, the CRISPR-Cas system originated in thermophilic Archaea and subsequently spread horizontally among prokaryotes.
Because of the extreme diversity of CRISPR-Cas systems, in-depth sequence and structure comparison continue to reveal unexpected homologous relationship among Cas proteins. Unification of Cas protein families previously considered unrelated provides for improvement in the classification of CRISPR-Cas systems and a reconstruction of their evolution.
Open peer review
This article was reviewed by Malcolm White (nominated by Purficacion Lopez-Garcia), Frank Eisenhaber and Igor Zhulin. For the full reviews, see the Reviewers' Comments section.
PMCID: PMC3150331  PMID: 21756346
11.  Two new families of the FtsZ-tubulin protein superfamily implicated in membrane remodeling in diverse bacteria and archaea 
Biology Direct  2010;5:33.
Several recent discoveries reveal unexpected versatility of the bacterial and archaeal cytoskeleton systems that are involved in cell division and other processes based on membrane remodeling. Here we apply methods for distant protein sequence similarity detection, phylogenetic approaches, and genome context analysis to described two previously unnoticed families of the FtsZ-tubulin superfamily. One of these families is limited in its spread to Proteobacteria whereas the other is represented in diverse bacteria and archaea, and might be the key component of a novel, multicomponent membrane remodeling system that also includes a Von Willebrand A domain-containing protein, a distinct GTPase and membrane transport proteins of the OmpA family.
This article was reviewed by Purificación López-García and Gáspár Jékely; for complete reviews, see the Reviewers Reports section.
PMCID: PMC2875224  PMID: 20459678
12.  CRISPR-Cas: an adaptive immunity system in prokaryotes 
Most of the archaea and numerous bacteria possess an elaborate system of adaptive immunity to mobile genetic elements known as the CRISPR (clustered regularly interspaced short palindromic repeats)-associated system (CRISPR-Cas), which consists of arrays of short repeats interspersed with unique DNA spacers and adjacent operons encompassing CRISPR-associated (cas) genes with predicted and, in some cases, experimentally validated nuclease, helicase, and polymerase activities. The system functions by integrating fragments of alien DNA between the repeats and employing their transcripts to degrade the DNA of the respective invading elements via an RNA interference-like mechanism. The CRISPR-Cas system is a case of apparent Lamarckian inheritance.
PMCID: PMC2884157  PMID: 20556198
13.  Identification of an ortholog of the eukaryotic RNA polymerase III subunit RPC34 in Crenarchaeota and Thaumarchaeota suggests specialization of RNA polymerases for coding and non-coding RNAs in Archaea 
Biology Direct  2009;4:39.
One of the hallmarks of eukaryotic information processing is the co-existence of 3 distinct, multi-subunit RNA polymerase complexes that are dedicated to the transcription of specific classes of coding or non-coding RNAs. Archaea encode only one RNA polymerase that resembles the eukaryotic RNA polymerase II with respect to the subunit composition. Here we identify archaeal orthologs of the eukaryotic RNA polymerase III subunit RPC34. Genome context analysis supports a function of this archaeal protein in the transcription of non-coding RNAs. These findings suggest that functional separation of RNA polymerases for protein-coding genes and non-coding RNAs might predate the origin of the Eukaryotes.
Reviewers: This article was reviewed by Andrei Osterman and Patrick Forterre (nominated by Purificación López-García)
PMCID: PMC2770514  PMID: 19828044
14.  Prokaryotic homologs of Argonaute proteins are predicted to function as key components of a novel system of defense against mobile genetic elements 
Biology Direct  2009;4:29.
In eukaryotes, RNA interference (RNAi) is a major mechanism of defense against viruses and transposable elements as well of regulating translation of endogenous mRNAs. The RNAi systems recognize the target RNA molecules via small guide RNAs that are completely or partially complementary to a region of the target. Key components of the RNAi systems are proteins of the Argonaute-PIWI family some of which function as slicers, the nucleases that cleave the target RNA that is base-paired to a guide RNA. Numerous prokaryotes possess the CRISPR-associated system (CASS) of defense against phages and plasmids that is, in part, mechanistically analogous but not homologous to eukaryotic RNAi systems. Many prokaryotes also encode homologs of Argonaute-PIWI proteins but their functions remain unknown.
We present a detailed analysis of Argonaute-PIWI protein sequences and the genomic neighborhoods of the respective genes in prokaryotes. Whereas eukaryotic Ago/PIWI proteins always contain PAZ (oligonucleotide binding) and PIWI (active or inactivated nuclease) domains, the prokaryotic Argonaute homologs (pAgos) fall into two major groups in which the PAZ domain is either present or absent. The monophyly of each group is supported by a phylogenetic analysis of the conserved PIWI-domains. Almost all pAgos that lack a PAZ domain appear to be inactivated, and the respective genes are associated with a variety of predicted nucleases in putative operons. An additional, uncharacterized domain that is fused to various nucleases appears to be a unique signature of operons encoding the short (lacking PAZ) pAgo form. By contrast, almost all PAZ-domain containing pAgos are predicted to be active nucleases. Some proteins of this group (e.g., that from Aquifex aeolicus) have been experimentally shown to possess nuclease activity, and are not typically associated with genes for other (putative) nucleases. Given these observations, the apparent extensive horizontal transfer of pAgo genes, and their common, statistically significant over-representation in genomic neighborhoods enriched in genes encoding proteins involved in the defense against phages and/or plasmids, we hypothesize that pAgos are key components of a novel class of defense systems. The PAZ-domain containing pAgos are predicted to directly destroy virus or plasmid nucleic acids via their nuclease activity, whereas the apparently inactivated, PAZ-lacking pAgos could be structural subunits of protein complexes that contain, as active moieties, the putative nucleases that we predict to be co-expressed with these pAgos. All these nucleases are predicted to be DNA endonucleases, so it seems most probable that the putative novel phage/plasmid-defense system targets phage DNA rather than mRNAs. Given that in eukaryotic RNAi systems, the PAZ domain binds a guide RNA and positions it on the complementary region of the target, we further speculate that pAgos function on a similar principle (the guide being either DNA or RNA), and that the uncharacterized domain found in putative operons with the short forms of pAgos is a functional substitute for the PAZ domain.
The hypothesis that pAgos are key components of a novel prokaryotic immune system that employs guide RNA or DNA molecules to degrade nucleic acids of invading mobile elements implies a functional analogy with the prokaryotic CASS and a direct evolutionary connection with eukaryotic RNAi. The predictions of the hypothesis including both the activities of pAgos and those of the associated endonucleases are readily amenable to experimental tests.
This article was reviewed by Daniel Haft, Martijn Huynen, and Chris Ponting.
PMCID: PMC2743648  PMID: 19706170
15.  Comprehensive comparative-genomic analysis of Type 2 toxin-antitoxin systems and related mobile stress response systems in prokaryotes 
Biology Direct  2009;4:19.
The prokaryotic toxin-antitoxin systems (TAS, also referred to as TA loci) are widespread, mobile two-gene modules that can be viewed as selfish genetic elements because they evolved mechanisms to become addictive for replicons and cells in which they reside, but also possess "normal" cellular functions in various forms of stress response and management of prokaryotic population. Several distinct TAS of type 1, where the toxin is a protein and the antitoxin is an antisense RNA, and numerous, unrelated TAS of type 2, in which both the toxin and the antitoxin are proteins, have been experimentally characterized, and it is suspected that many more remain to be identified.
We report a comprehensive comparative-genomic analysis of Type 2 toxin-antitoxin systems in prokaryotes. Using sensitive methods for distant sequence similarity search, genome context analysis and a new approach for the identification of mobile two-component systems, we identified numerous, previously unnoticed protein families that are homologous to toxins and antitoxins of known type 2 TAS. In addition, we predict 12 new families of toxins and 13 families of antitoxins, and also, predict a TAS or TAS-like activity for several gene modules that were not previously suspected to function in that capacity. In particular, we present indications that the two-gene module that encodes a minimal nucleotidyl transferase and the accompanying HEPN protein, and is extremely abundant in many archaea and bacteria, especially, thermophiles might comprise a novel TAS. We present a survey of previously known and newly predicted TAS in 750 complete genomes of archaea and bacteria, quantitatively demonstrate the exceptional mobility of the TAS, and explore the network of toxin-antitoxin pairings that combines plasticity with selectivity.
The defining properties of the TAS, namely, the typically small size of the toxin and antitoxin genes, fast evolution, and extensive horizontal mobility, make the task of comprehensive identification of these systems particularly challenging. However, these same properties can be exploited to develop context-based computational approaches which, combined with exhaustive analysis of subtle sequence similarities were employed in this work to substantially expand the current collection of TAS by predicting both previously unnoticed, derived versions of known toxins and antitoxins, and putative novel TAS-like systems. In a broader context, the TAS belong to the resistome domain of the prokaryotic mobilome which includes partially selfish, addictive gene cassettes involved in various aspects of stress response and organized under the same general principles as the TAS. The "selfish altruism", or "responsible selfishness", of TAS-like systems appears to be a defining feature of the resistome and an important characteristic of the entire prokaryotic pan-genome given that in the prokaryotic world the mobilome and the "stable" chromosomes form a dynamic continuum.
This paper was reviewed by Kenn Gerdes (nominated by Arcady Mushegian), Daniel Haft, Arcady Mushegian, and Andrei Osterman. For full reviews, go to the Reviewers' Reports section.
PMCID: PMC2701414  PMID: 19493340
16.  Evolution of DNA polymerases: an inactivated polymerase-exonuclease module in Pol ε and a chimeric origin of eukaryotic polymerases from two classes of archaeal ancestors 
Biology Direct  2009;4:11.
Evolution of DNA polymerases, the key enzymes of DNA replication and repair, is central to any reconstruction of the history of cellular life. However, the details of the evolutionary relationships between DNA polymerases of archaea and eukaryotes remain unresolved.
We performed a comparative analysis of archaeal, eukaryotic, and bacterial B-family DNA polymerases, which are the main replicative polymerases in archaea and eukaryotes, combined with an analysis of domain architectures. Surprisingly, we found that eukaryotic Polymerase ε consists of two tandem exonuclease-polymerase modules, the active N-terminal module and a C-terminal module in which both enzymatic domains are inactivated. The two modules are only distantly related to each other, an observation that suggests the possibility that Pol ε evolved as a result of insertion and subsequent inactivation of a distinct polymerase, possibly, of bacterial descent, upstream of the C-terminal Zn-fingers, rather than by tandem duplication. The presence of an inactivated exonuclease-polymerase module in Pol ε parallels a similar inactivation of both enzymatic domains in a distinct family of archaeal B-family polymerases. The results of phylogenetic analysis indicate that eukaryotic B-family polymerases, most likely, originate from two distantly related archaeal B-family polymerases, one form giving rise to Pol ε, and the other one to the common ancestor of Pol α, Pol δ, and Pol ζ. The C-terminal Zn-fingers that are present in all eukaryotic B-family polymerases, unexpectedly, are homologous to the Zn-finger of archaeal D-family DNA polymerases that are otherwise unrelated to the B family. The Zn-finger of Polε shows a markedly greater similarity to the counterpart in archaeal PolD than the Zn-fingers of other eukaryotic B-family polymerases.
Evolution of eukaryotic DNA polymerases seems to have involved previously unnoticed complex events. We hypothesize that the archaeal ancestor of eukaryotes encoded three DNA polymerases, namely, two distinct B-family polymerases and a D-family polymerase all of which contributed to the evolution of the eukaryotic replication machinery. The Zn-finger might have been acquired from PolD by the B-family form that gave rise to Pol ε prior to or in the course of eukaryogenesis, and subsequently, was captured by the ancestor of the other B-family eukaryotic polymerases. The inactivated polymerase-exonuclease module of Pol ε might have evolved by fusion with a distinct polymerase, rather than by duplication of the active module of Pol ε, and is likely to play an important role in the assembly of eukaryotic replication and repair complexes.
This article was reviewed by Patrick Forterre, Arcady Mushegian, and Chris Ponting. For the full reviews, please go to the Reviewers' Reports section.
PMCID: PMC2669801  PMID: 19296856
17.  Encapsulated in silica: genome, proteome and physiology of the thermophilic bacterium Anoxybacillus flavithermus WK1 
Genome Biology  2008;9(11):R161.
Sequencing of the complete genome of Anoxybacillus flavithermus reveals enzymes that are required for silica adaptation and biofilm formation.
Gram-positive bacteria of the genus Anoxybacillus have been found in diverse thermophilic habitats, such as geothermal hot springs and manure, and in processed foods such as gelatin and milk powder. Anoxybacillus flavithermus is a facultatively anaerobic bacterium found in super-saturated silica solutions and in opaline silica sinter. The ability of A. flavithermus to grow in super-saturated silica solutions makes it an ideal subject to study the processes of sinter formation, which might be similar to the biomineralization processes that occurred at the dawn of life.
We report here the complete genome sequence of A. flavithermus strain WK1, isolated from the waste water drain at the Wairakei geothermal power station in New Zealand. It consists of a single chromosome of 2,846,746 base pairs and is predicted to encode 2,863 proteins. In silico genome analysis identified several enzymes that could be involved in silica adaptation and biofilm formation, and their predicted functions were experimentally validated in vitro. Proteomic analysis confirmed the regulation of biofilm-related proteins and crucial enzymes for the synthesis of long-chain polyamines as constituents of silica nanospheres.
Microbial fossils preserved in silica and silica sinters are excellent objects for studying ancient life, a new paleobiological frontier. An integrated analysis of the A. flavithermus genome and proteome provides the first glimpse of metabolic adaptation during silicification and sinter formation. Comparative genome analysis suggests an extensive gene loss in the Anoxybacillus/Geobacillus branch after its divergence from other bacilli.
PMCID: PMC2614493  PMID: 19014707
18.  A genomic analysis of the archaeal system Ignicoccus hospitalis-Nanoarchaeum equitans 
Genome Biology  2008;9(11):R158.
Sequencing of the complete genome of Ignicoccus hospitalis gives insight into its association with another species of Archaea, Nanoarchaeum equitans.
The relationship between the hyperthermophiles Ignicoccus hospitalis and Nanoarchaeum equitans is the only known example of a specific association between two species of Archaea. Little is known about the mechanisms that enable this relationship.
We sequenced the complete genome of I. hospitalis and found it to be the smallest among independent, free-living organisms. A comparative genomic reconstruction suggests that the I. hospitalis lineage has lost most of the genes associated with a heterotrophic metabolism that is characteristic of most of the Crenarchaeota. A streamlined genome is also suggested by a low frequency of paralogs and fragmentation of many operons. However, this process appears to be partially balanced by lateral gene transfer from archaeal and bacterial sources.
A combination of genomic and cellular features suggests highly efficient adaptation to the low energy yield of sulfur-hydrogen respiration and efficient inorganic carbon and nitrogen assimilation. Evidence of lateral gene exchange between N. equitans and I. hospitalis indicates that the relationship has impacted both genomes. This association is the simplest symbiotic system known to date and a unique model for studying mechanisms of interspecific relationships at the genomic and metabolic levels.
PMCID: PMC2614490  PMID: 19000309
19.  A highly conserved family of inactivated archaeal B family DNA polymerases 
Biology Direct  2008;3:32.
A widespread and highly conserved family of apparently inactivated derivatives of archaeal B-family DNA polymerases is described. Phylogenetic analysis shows that the inactivated forms comprise a distinct clade among archaeal B-family polymerases and that, within this clade, Euryarchaea and Crenarchaea are clearly separated from each other and from a small group of bacterial homologs. These findings are compatible with an ancient duplication of the DNA polymerase gene followed by inactivation and parallel loss in some of the lineages although contribution of horizontal gene transfer cannot be ruled out. The inactivated derivative of the archaeal DNA polymerase could form a complex with the active paralog and play a structural role in DNA replication.
This article was reviewed by Purificacion Lopez-Garcia and Chris Ponting. For the full reviews, please go to the Reviewers' Reports section.
PMCID: PMC2527604  PMID: 18684330
20.  Complete genome sequence of the extremely acidophilic methanotroph isolate V4, Methylacidiphilum infernorum, a representative of the bacterial phylum Verrucomicrobia 
Biology Direct  2008;3:26.
The phylum Verrucomicrobia is a widespread but poorly characterized bacterial clade. Although cultivation-independent approaches detect representatives of this phylum in a wide range of environments, including soils, seawater, hot springs and human gastrointestinal tract, only few have been isolated in pure culture. We have recently reported cultivation and initial characterization of an extremely acidophilic methanotrophic member of the Verrucomicrobia, strain V4, isolated from the Hell's Gate geothermal area in New Zealand. Similar organisms were independently isolated from geothermal systems in Italy and Russia.
We report the complete genome sequence of strain V4, the first one from a representative of the Verrucomicrobia. Isolate V4, initially named "Methylokorus infernorum" (and recently renamed Methylacidiphilum infernorum) is an autotrophic bacterium with a streamlined genome of ~2.3 Mbp that encodes simple signal transduction pathways and has a limited potential for regulation of gene expression. Central metabolism of M. infernorum was reconstructed almost completely and revealed highly interconnected pathways of autotrophic central metabolism and modifications of C1-utilization pathways compared to other known methylotrophs. The M. infernorum genome does not encode tubulin, which was previously discovered in bacteria of the genus Prosthecobacter, or close homologs of any other signature eukaryotic proteins. Phylogenetic analysis of ribosomal proteins and RNA polymerase subunits unequivocally supports grouping Planctomycetes, Verrucomicrobia and Chlamydiae into a single clade, the PVC superphylum, despite dramatically different gene content in members of these three groups. Comparative-genomic analysis suggests that evolution of the M. infernorum lineage involved extensive horizontal gene exchange with a variety of bacteria. The genome of M. infernorum shows apparent adaptations for existence under extremely acidic conditions including a major upward shift in the isoelectric points of proteins.
The results of genome analysis of M. infernorum support the monophyly of the PVC superphylum. M. infernorum possesses a streamlined genome but seems to have acquired numerous genes including those for enzymes of methylotrophic pathways via horizontal gene transfer, in particular, from Proteobacteria.
This article was reviewed by John A. Fuerst, Ludmila Chistoserdova, and Radhey S. Gupta.
PMCID: PMC2474590  PMID: 18593465
21.  Evolutionary primacy of sodium bioenergetics 
Biology Direct  2008;3:13.
The F- and V-type ATPases are rotary molecular machines that couple translocation of protons or sodium ions across the membrane to the synthesis or hydrolysis of ATP. Both the F-type (found in most bacteria and eukaryotic mitochondria and chloroplasts) and V-type (found in archaea, some bacteria, and eukaryotic vacuoles) ATPases can translocate either protons or sodium ions. The prevalent proton-dependent ATPases are generally viewed as the primary form of the enzyme whereas the sodium-translocating ATPases of some prokaryotes are usually construed as an exotic adaptation to survival in extreme environments.
We combine structural and phylogenetic analyses to clarify the evolutionary relation between the proton- and sodium-translocating ATPases. A comparison of the structures of the membrane-embedded oligomeric proteolipid rings of sodium-dependent F- and V-ATPases reveals nearly identical sets of amino acids involved in sodium binding. We show that the sodium-dependent ATPases are scattered among proton-dependent ATPases in both the F- and the V-branches of the phylogenetic tree.
Barring convergent emergence of the same set of ligands in several lineages, these findings indicate that the use of sodium gradient for ATP synthesis is the ancestral modality of membrane bioenergetics. Thus, a primitive, sodium-impermeable but proton-permeable cell membrane that harboured a set of sodium-transporting enzymes appears to have been the evolutionary predecessor of the more structurally demanding proton-tight membranes. The use of proton as the coupling ion appears to be a later innovation that emerged on several independent occasions.
This article was reviewed by J. Peter Gogarten, Martijn A. Huynen, and Igor B. Zhulin. For the full reviews, please go to the Reviewers' comments section.
PMCID: PMC2359735  PMID: 18380897
22.  The prokaryotic V4R domain is the likely ancestor of a key component of the eukaryotic vesicle transport system 
Biology Direct  2008;3:2.
Intracellular vesicle traffic that enables delivery of proteins between the endoplasmic reticulum, Golgi and various endosomal subcompartments is one of the hallmarks of the eukaryotic cell. Its evolutionary history is not well understood but the process itself and the core vesicle traffic machinery are believed to be ancient. We show here that the 4-vinyl reductase (V4R) protein domain present in bacteria and archaea is homologous to the Bet3 subunit of the TRAPP1 vesicle-tethering complex that is conserved in all eukaryotes. This suggests, for the first time, a prokaryotic origin for one of the key eukaryotic trafficking proteins.
This article was reviewed by Gaspar Jekely and Mark A. Ragan
PMCID: PMC2253512  PMID: 18221539
23.  Orthologs of the small RPB8 subunit of the eukaryotic RNA polymerases are conserved in hyperthermophilic Crenarchaeota and "Korarchaeota" 
Biology Direct  2007;2:38.
Although most of the key components of the transcription apparatus, and in particular, RNA polymerase (RNAP) subunits, are conserved between archaea and eukaryotes, no archaeal homologs of the small RPB8 subunit of eukaryotic RNAP have been detected. We report that orthologs of RPB8 are encoded in all sequenced genomes of hyperthermophilic Crenarchaeota and a recently sequenced "korarchaeal" genome, but not in Euryarchaeota or the mesophilic crenarchaeon Cenarchaeum symbiosum. These findings suggest that all 12 core subunits of eukaryotic RNAPs were already present in the last common ancestor of the extant archaea.
This article was reviewed by Purificacion Lopez-Garcia and Chris Ponting.
PMCID: PMC2234397  PMID: 18081935
24.  Clusters of orthologous genes for 41 archaeal genomes and implications for evolutionary genomics of archaea 
Biology Direct  2007;2:33.
An evolutionary classification of genes from sequenced genomes that distinguishes between orthologs and paralogs is indispensable for genome annotation and evolutionary reconstruction. Shortly after multiple genome sequences of bacteria, archaea, and unicellular eukaryotes became available, an attempt on such a classification was implemented in Clusters of Orthologous Groups of proteins (COGs). Rapid accumulation of genome sequences creates opportunities for refining COGs but also represents a challenge because of error amplification. One of the practical strategies involves construction of refined COGs for phylogenetically compact subsets of genomes.
New Archaeal Clusters of Orthologous Genes (arCOGs) were constructed for 41 archaeal genomes (13 Crenarchaeota, 27 Euryarchaeota and one Nanoarchaeon) using an improved procedure that employs a similarity tree between smaller, group-specific clusters, semi-automatically partitions orthology domains in multidomain proteins, and uses profile searches for identification of remote orthologs. The annotation of arCOGs is a consensus between three assignments based on the COGs, the CDD database, and the annotations of homologs in the NR database. The 7538 arCOGs, on average, cover ~88% of the genes in a genome compared to a ~76% coverage in COGs. The finer granularity of ortholog identification in the arCOGs is apparent from the fact that 4538 arCOGs correspond to 2362 COGs; ~40% of the arCOGs are new. The archaeal gene core (protein-coding genes found in all 41 genome) consists of 166 arCOGs. The arCOGs were used to reconstruct gene loss and gene gain events during archaeal evolution and gene sets of ancestral forms. The Last Archaeal Common Ancestor (LACA) is conservatively estimated to possess 996 genes compared to 1245 and 1335 genes for the last common ancestors of Crenarchaeota and Euryarchaeota, respectively. It is inferred that LACA was a chemoautotrophic hyperthermophile that, in addition to the core archaeal functions, encoded more idiosyncratic systems, e.g., the CASS systems of antivirus defense and some toxin-antitoxin systems.
The arCOGs provide a convenient, flexible framework for functional annotation of archaeal genomes, comparative genomics and evolutionary reconstructions. Genomic reconstructions suggest that the last common ancestor of archaea might have been (nearly) as advanced as the modern archaeal hyperthermophiles. ArCOGs and related information are available at: .
This article was reviewed by Peer Bork, Patrick Forterre, and Purificacion Lopez-Garcia.
PMCID: PMC2222616  PMID: 18042280
25.  A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action 
Biology Direct  2006;1:7.
All archaeal and many bacterial genomes contain Clustered Regularly Interspaced Short Palindrome Repeats (CRISPR) and variable arrays of the CRISPR-associated (cas) genes that have been previously implicated in a novel form of DNA repair on the basis of comparative analysis of their protein product sequences. However, the proximity of CRISPR and cas genes strongly suggests that they have related functions which is hard to reconcile with the repair hypothesis.
The protein sequences of the numerous cas gene products were classified into ~25 distinct protein families; several new functional and structural predictions are described. Comparative-genomic analysis of CRISPR and cas genes leads to the hypothesis that the CRISPR-Cas system (CASS) is a mechanism of defense against invading phages and plasmids that functions analogously to the eukaryotic RNA interference (RNAi) systems. Specific functional analogies are drawn between several components of CASS and proteins involved in eukaryotic RNAi, including the double-stranded RNA-specific helicase-nuclease (dicer), the endonuclease cleaving target mRNAs (slicer), and the RNA-dependent RNA polymerase. However, none of the CASS components is orthologous to its apparent eukaryotic functional counterpart. It is proposed that unique inserts of CRISPR, some of which are homologous to fragments of bacteriophage and plasmid genes, function as prokaryotic siRNAs (psiRNA), by base-pairing with the target mRNAs and promoting their degradation or translation shutdown. Specific hypothetical schemes are developed for the functioning of the predicted prokaryotic siRNA system and for the formation of new CRISPR units with unique inserts encoding psiRNA conferring immunity to the respective newly encountered phages or plasmids. The unique inserts in CRISPR show virtually no similarity even between closely related bacterial strains which suggests their rapid turnover, on evolutionary scale. Corollaries of this finding are that, even among closely related prokaryotes, the most commonly encountered phages and plasmids are different and/or that the dominant phages and plasmids turn over rapidly.
We proposed previously that Cas proteins comprise a novel DNA repair system. The association of the cas genes with CRISPR and, especially, the presence, in CRISPR units, of unique inserts homologous to phage and plasmid genes make us abandon this hypothesis. It appears most likely that CASS is a prokaryotic system of defense against phages and plasmids that functions via the RNAi mechanism. The functioning of this system seems to involve integration of fragments of foreign genes into archaeal and bacterial chromosomes yielding heritable immunity to the respective agents. However, it appears that this inheritance is extremely unstable on the evolutionary scale such that the repertoires of unique psiRNAs are completely replaced even in closely related prokaryotes, presumably, in response to rapidly changing repertoires of dominant phages and plasmids.
This article was reviewed by: Eric Bapteste, Patrick Forterre, and Martijn Huynen.
Open peer review
Reviewed by Eric Bapteste, Patrick Forterre, and Martijn Huynen.
For the full reviews, please go to the Reviewers' comments section.
PMCID: PMC1462988  PMID: 16545108

Results 1-25 (31)