Search tips
Search criteria

Results 1-4 (4)

Clipboard (0)
Year of Publication
Document Types
1.  Evolution of glyoxylate cycle enzymes in Metazoa: evidence of multiple horizontal transfer events and pseudogene formation 
Biology Direct  2006;1:31.
The glyoxylate cycle is thought to be present in bacteria, protists, plants, fungi, and nematodes, but not in other Metazoa. However, activity of the glyoxylate cycle enzymes, malate synthase (MS) and isocitrate lyase (ICL), in animal tissues has been reported. In order to clarify the status of the MS and ICL genes in animals and get an insight into their evolution, we undertook a comparative-genomic study.
Using sequence similarity searches, we identified MS genes in arthropods, echinoderms, and vertebrates, including platypus and opossum, but not in the numerous sequenced genomes of placental mammals. The regions of the placental mammals' genomes expected to code for malate synthase, as determined by comparison of the gene orders in vertebrate genomes, show clear similarity to the opossum MS sequence but contain stop codons, indicating that the MS gene became a pseudogene in placental mammals. By contrast, the ICL gene is undetectable in animals other than the nematodes that possess a bifunctional, fused ICL-MS gene. Examination of phylogenetic trees of MS and ICL suggests multiple horizontal gene transfer events that probably went in both directions between several bacterial and eukaryotic lineages. The strongest evidence was obtained for the acquisition of the bifunctional ICL-MS gene from an as yet unknown bacterial source with the corresponding operonic organization by the common ancestor of the nematodes.
The distribution of the MS and ICL genes in animals suggests that either they encode alternative enzymes of the glyoxylate cycle that are not orthologous to the known MS and ICL or the animal MS acquired a new function that remains to be characterized. Regardless of the ultimate solution to this conundrum, the genes for the glyoxylate cycle enzymes present a remarkable variety of evolutionary events including unusual horizontal gene transfer from bacteria to animals.
Arcady Mushegian (Stowers Institute for Medical Research), Andrey Osterman (Burnham Institute for Medical Research), Chris Ponting (Oxford University).
PMCID: PMC1630690  PMID: 17059607
2.  Signs of positive selection of somatic mutations in human cancers detected by EST sequence analysis 
BMC Cancer  2006;6:36.
Carcinogenesis typically involves multiple somatic mutations in caretaker (DNA repair) and gatekeeper (tumor suppressors and oncogenes) genes. Analysis of mutation spectra of the tumor suppressor that is most commonly mutated in human cancers, p53, unexpectedly suggested that somatic evolution of the p53 gene during tumorigenesis is dominated by positive selection for gain of function. This conclusion is supported by accumulating experimental evidence of evolution of new functions of p53 in tumors. These findings prompted a genome-wide analysis of possible positive selection during tumor evolution.
A comprehensive analysis of probable somatic mutations in the sequences of Expressed Sequence Tags (ESTs) from malignant tumors and normal tissues was performed in order to access the prevalence of positive selection in cancer evolution. For each EST, the numbers of synonymous and non-synonymous substitutions were calculated. In order to identify genes with a signature of positive selection in cancers, these numbers were compared to: i) expected numbers and ii) the numbers for the respective genes in the ESTs from normal tissues.
We identified 112 genes with a signature of positive selection in cancers, i.e., a significantly elevated ratio of non-synonymous to synonymous substitutions, in tumors as compared to 37 such genes in an approximately equal-sized EST collection from normal tissues. A substantial fraction of the tumor-specific positive-selection candidates have experimentally demonstrated or strongly predicted links to cancer.
The results of EST analysis should be interpreted with extreme caution given the noise introduced by sequencing errors and undetected polymorphisms. Furthermore, an inherent limitation of EST analysis is that multiple mutations amenable to statistical analysis can be detected only in relatively highly expressed genes. Nevertheless, the present results suggest that positive selection might affect a substantial number of genes during tumorigenic somatic evolution.
PMCID: PMC1431556  PMID: 16469093
3.  Selection in the evolution of gene duplications 
Genome Biology  2002;3(2):research0008.1-research0008.9.
Gene duplications have a major role in the evolution of new biological functions. Theoretical studies often assume that a duplication per se is selectively neutral and that, following a duplication, one of the gene copies is freed from purifying (stabilizing) selection, which creates the potential for evolution of a new function.
In search of systematic evidence of accelerated evolution after duplication, we used data from 26 bacterial, six archaeal, and seven eukaryotic genomes to compare the mode and strength of selection acting on recently duplicated genes (paralogs) and on similarly diverged, unduplicated orthologous genes in different species. We find that the ratio of nonsynonymous to synonymous substitutions (Kn/Ks) in most paralogous pairs is <<1 and that paralogs typically evolve at similar rates, without significant asymmetry, indicating that both paralogs produced by a duplication are subject to purifying selection. This selection is, however, substantially weaker than the purifying selection affecting unduplicated orthologs that have diverged to the same extent as the analyzed paralogs. Most of the recently duplicated genes appear to be involved in various forms of environmental response; in particular, many of them encode membrane and secreted proteins.
The results of this analysis indicate that recently duplicated paralogs evolve faster than orthologs with the same level of divergence and similar functions, but apparently do not experience a phase of neutral evolution. We hypothesize that gene duplications that persist in an evolving lineage are beneficial from the time of their origin, due primarily to a protein dosage effect in response to variable environmental conditions; duplications are likely to give rise to new functions at a later phase of their evolution once a higher level of divergence is reached.
PMCID: PMC65685  PMID: 11864370
4.  Constant relative rate of protein evolution and detection of functional diversification among bacterial, archaeal and eukaryotic proteins 
Genome Biology  2001;2(12):research0053.1-research0053.9.
Detection of changes in a protein's evolutionary rate may reveal cases of change in that protein's function. We developed and implemented a simple relative rates test in an attempt to assess the rate constancy of protein evolution and to detect cases of functional diversification between orthologous proteins. The test was performed on clusters of orthologous protein sequences from complete bacterial genomes (Chlamydia trachomatis, C. muridarum and Chlamydophila pneumoniae), complete archaeal genomes (Pyrococcus horikoshii, P. abyssi and P. furiosus) and partially sequenced mammalian genomes (human, mouse and rat).
Amino-acid sequence evolution rates are significantly correlated on different branches of phylogenetic trees representing the great majority of analyzed orthologous protein sets from all three domains of life. However, approximately 1% of the proteins from each group of species deviates from this pattern and instead shows variation that is consistent with an acceleration of the rate of amino-acid substitution, which may be due to functional diversification. Most of the putative functionally diversified proteins from all three species groups are predicted to function at the periphery of the cells and mediate their interaction with the environment.
Relative rates of protein evolution are remarkably constant for the three species groups analyzed here. Deviations from this rate constancy are probably due to changes in selective constraints associated with diversification between orthologs. Functional diversification between orthologs is thought to be a relatively rare event. However, the resolution afforded by the test designed specifically for genomic-scale datasets allowed us to identify numerous cases of possible functional diversification between orthologous proteins.
PMCID: PMC64838  PMID: 11790256

Results 1-4 (4)