PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
1.  Comparative Analysis of in vivo Interactions Between Rev1 Protein and Other Y-Family DNA Polymerases in Animals and Yeasts 
DNA repair  2008;7(3):439-451.
Summary
Eukaryotes are endowed with multiple specialized DNA polymerases, some (if not all) of which are believed to play important roles in the tolerance of base damage during DNA replication. Among these DNA polymerases, Rev1 protein (a deoxycytidyl transferase) from vertebrates interacts with several other specialized polymerases via a highly conserved C-terminal region. The present studies assessed whether these interactions are retained in more experimentally tractable model systems, including yeasts, flies, and the nematode C. elegans. We observed a physical interaction between Rev1 protein and other Y-family polymerases in the fruit fly Drosophila melanogaster. However, despite the fact that the C-terminal region of Drosophila and yeast Rev1 are conserved from vertebrates to a similar extent, such interactions were not observed in S. cerevisiae or S. pombe. With respect to regions in specialized DNA polymerases that are required for interaction with Rev1, we find predicted disorder to be an underlying structural commonality. The results of this study suggest that special consideration should be exercised when making mechanistic extrapolations regarding translesion DNA synthesis from one eukaryotic system to another.
doi:10.1016/j.dnarep.2007.11.016
PMCID: PMC2363158  PMID: 18242152
Y-family of DNA polymerases; TLS; Rev1; polymerase η; polymerase ι; polymerase κ; protein-protein interactions
2.  Cloning the human and mouse MMS19 genes and functional complementation of a yeast mms19 deletion mutant 
Nucleic Acids Research  2001;29(9):1884-1891.
The MMS19 gene of the yeast Saccharomyces cerevisiae encodes a polypeptide of unknown function which is required for both nucleotide excision repair (NER) and RNA polymerase II (RNAP II) transcription. Here we report the molecular cloning of human and mouse orthologs of the yeast MMS19 gene. Both human and Drosophila MMS19 cDNAs correct thermosensitive growth and sensitivity to killing by UV radiation in a yeast mutant deleted for the MMS19 gene, indicating functional conservation between the yeast and mammalian gene products. Alignment of the translated sequences of MMS19 from multiple eukaryotes, including mouse and human, revealed the presence of several conserved regions, including a HEAT repeat domain near the C-terminus. The presence of HEAT repeats, coupled with functional complementation of yeast mutant phenotypes by the orthologous protein from higher eukaryotes, suggests a role of Mms19 protein in the assembly of a multiprotein complex(es) required for NER and RNAP II transcription. Both the mouse and human genes are ubiquitously expressed as multiple transcripts, some of which appear to derive from alternative splicing. The ratio of different transcripts varies in several different tissue types.
PMCID: PMC37259  PMID: 11328871

Results 1-2 (2)