PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None
Journals
Authors
Year of Publication
Document Types
1.  Elaborate security TRAINing to fight against expression of genomic junk 
Cell Cycle  2013;12(4):553-554.
A new study shows that the expression of two classes of repetitive elements in the mouse genome is controlled through two complementary mechanisms: DNA methylation and p53-mediated transcription suppression.¹ When both lines of defense fail, expression of the repeats yields large quantities of double-stranded RNA, triggering interferon response that leads to caspase-dependent cell death. These notable findings highlight two fundamental trends: tight coupling of defense and cell death mechanisms that appears to be universal in cellular life and the exploitation of the expression of “junk” DNA as a signal triggering “altruistic” cell suicide.
doi:10.4161/cc.23717
PMCID: PMC3594256  PMID: 23370394
p53; transposable elements; SINE repeats; DNA methylation; interferon response
2.  EREM: Parameter Estimation and Ancestral Reconstruction by Expectation-Maximization Algorithm for a Probabilistic Model of Genomic Binary Characters Evolution 
Advances in Bioinformatics  2010;2010:167408.
Evolutionary binary characters are features of species or genes, indicating the absence (value zero) or presence (value one) of some property. Examples include eukaryotic gene architecture (the presence or absence of an intron in a particular locus), gene content, and morphological characters. In many studies, the acquisition of such binary characters is assumed to represent a rare evolutionary event, and consequently, their evolution is analyzed using various flavors of parsimony. However, when gain and loss of the character are not rare enough, a probabilistic analysis becomes essential. Here, we present a comprehensive probabilistic model to describe the evolution of binary characters on a bifurcating phylogenetic tree. A fast software tool, EREM, is provided, using maximum likelihood to estimate the parameters of the model and to reconstruct ancestral states (presence and absence in internal nodes) and events (gain and loss events along branches).
doi:10.1155/2010/167408
PMCID: PMC2866244  PMID: 20467467
3.  Holliday junction resolvases and related nucleases: identification of new families, phyletic distribution and evolutionary trajectories 
Nucleic Acids Research  2000;28(18):3417-3432.
Holliday junction resolvases (HJRs) are key enzymes of DNA recombination. A detailed computer analysis of the structural and evolutionary relationships of HJRs and related nucleases suggests that the HJR function has evolved independently from at least four distinct structural folds, namely RNase H, endonuclease, endonuclease VII–colicin E and RusA. The endonuclease fold, whose structural prototypes are the phage λ exonuclease, the very short patch repair nuclease (Vsr) and type II restriction enzymes, is shown to encompass by far a greater diversity of nucleases than previously suspected. This fold unifies archaeal HJRs, repair nucleases such as RecB and Vsr, restriction enzymes and a variety of predicted nucleases whose specific activities remain to be determined. Within the RNase H fold a new family of predicted HJRs, which is nearly ubiquitous in bacteria, was discovered, in addition to the previously characterized RuvC family. The proteins of this family, typified by Escherichia coli YqgF, are likely to function as an alternative to RuvC in most bacteria, but could be the principal HJRs in low-GC Gram-positive bacteria and Aquifex. Endonuclease VII of phage T4 is shown to serve as a structural template for many nucleases, including McrA and other type II restriction enzymes. Together with colicin E7, endonuclease VII defines a distinct metal-dependent nuclease fold. As a result of this analysis, the principal HJRs are now known or confidently predicted for all bacteria and archaea whose genomes have been completely sequenced, with many species encoding multiple potential HJRs. Horizontal gene transfer, lineage-specific gene loss and gene family expansion, and non-orthologous gene displacement seem to have been major forces in the evolution of HJRs and related nucleases. A remarkable case of displacement is seen in the Lyme disease spirochete Borrelia burgdorferi, which does not possess any of the typical HJRs, but instead encodes, in its chromosome and each of the linear plasmids, members of the λ exonuclease family predicted to function as HJRs. The diversity of HJRs and related nucleases in bacteria and archaea contrasts with their near absence in eukaryotes. The few detected eukaryotic representatives of the endonuclease fold and the RNase H fold have probably been acquired from bacteria via horizontal gene transfer. The identity of the principal HJR(s) involved in recombination in eukaryotes remains uncertain; this function could be performed by topoisomerase IB or by a novel, so far undetected, class of enzymes. Likely HJRs and related nucleases were identified in the genomes of numerous bacterial and eukaryotic DNA viruses. Gene flow between viral and cellular genomes has probably played a major role in the evolution of this class of enzymes. This analysis resulted in the prediction of numerous previously unnoticed nucleases, some of which are likely to be new restriction enzymes.
PMCID: PMC110722  PMID: 10982859

Results 1-3 (3)