PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
1.  Decoy Receptor CXCR7 Modulates Adrenomedullin-Mediated Cardiac and Lymphatic Vascular Development 
Developmental cell  2014;30(5):528-540.
Summary
Atypical 7-transmembrane receptors, often called decoy receptors, act promiscuously as molecular sinks to regulate ligand bioavailability and consequently temper the signaling of canonical G protein-coupled receptor (GPCR) pathways. Loss of mammalian CXCR7, the most recently described decoy receptor, results in postnatal lethality due to aberrant cardiac development and myocyte hyperplasia. Here, we provide the molecular underpinning for this proliferative phenotype by demonstrating that the dosage and signaling of adrenomedullin (Adm = gene, AM = protein)—a mitogenic peptide-hormone required for normal cardiovascular development—is tightly controlled by CXCR7. To this end, Cxcr7−/− mice exhibit gain-of-function cardiac and lymphatic vascular phenotypes which can be reversed upon genetic depletion of adrenomedullin ligand. In addition to identifying a biological ligand accountable for the phenotypes of Cxcr7−/− mice, these results reveal a previously underappreciated role for decoy receptors as molecular rheostats in controlling the timing and extent of GPCR-mediated cardiac and vascular development.
doi:10.1016/j.devcel.2014.07.012
PMCID: PMC4166507  PMID: 25203207
2.  A Homogeneous Method to Measure Nucleotide Exchange by α-Subunits of Heterotrimeric G-Proteins Using Fluorescence Polarization 
Abstract
The mainstay of assessing guanosine diphosphate release by the α-subunit of a heterotrimeric G-protein is the [35S]guanosine 5′-O-(3-thiotriphosphate) (GTPγS) radionucleotide-binding assay. This assay requires separation of protein-bound GTPγS from free GTPγS at multiple time points followed by quantification via liquid scintillation. The arduous nature of this assay makes it difficult to quickly characterize multiple mutants, determine the effects of individual variables (e.g., temperature and Mg2+ concentration) on nucleotide exchange, or screen for small molecule modulators of Gα nucleotide binding/cycling properties. Here, we describe a robust, homogeneous, fluorescence polarization assay using a red-shifted fluorescent GTPγS probe that can rapidly determine the rate of GTPγS binding by Gα subunits.
doi:10.1089/adt.2010.0286
PMCID: PMC2957273  PMID: 20662737

Results 1-2 (2)