PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None
Journals
Year of Publication
Document Types
1.  Neurobiological markers of exercise-related brain plasticity in older adults 
The current study examined how a randomized one-year aerobic exercise program for healthy older adults would affect serum levels of brain-derived neurotrophic factor (BDNF), insulin-like growth factor type 1 (IGF-1), and vascular endothelial growth factor (VEGF) - putative markers of exercise-induced benefits on brain function. The study also examined whether (a) change in the concentration of these growth factors was associated with alterations in functional connectivity following exercise, and (b) the extent to which pre-intervention growth factor levels were associated with training-related changes in functional connectivity. In 65 participants (mean age = 66.4), we found that although there were no group-level changes in growth factors as a function of the intervention, increased temporal lobe connectivity between the bilateral parahippocampus and the bilateral middle temporal gyrus was associated with increased BDNF, IGF-1, and VEGF for an aerobic walking group but not for a non-aerobic control group, and greater pre-intervention VEGF was associated with greater training-related increases in this functional connection. Results are consistent with animal models of exercise and the brain, but are the first to show in humans that exercise-induced increases in temporal lobe functional connectivity are associated with changes in growth factors and may be augmented by greater baseline VEGF.
doi:10.1016/j.bbi.2012.10.021
PMCID: PMC3544982  PMID: 23123199
exercise; aging; functional connectivity; fMRI; default mode network; aerobic fitness; growth factors
2.  Functional connectivity: a source of variance in the association between cardiorespiratory fitness and cognition? 
Neuropsychologia  2010;48(5):1394-1406.
Over the next twenty years the number of Americans diagnosed with dementia is expected to more than double (CDC 2007). It is, therefore, an important public health initiative to understand what factors contribute to the longevity of a healthy mind. Both default mode network (DMN) function and increased aerobic fitness have been associated with better cognitive performance and reduced incidence of Alzheimer’s disease among older adults. Here we examine the association between aerobic fitness, functional connectivity in the DMN, and cognitive performance. Results showed significant age-related deficits in functional connectivity in both local and distributed DMN pathways. However, in a group of healthy elderly adults, almost half of the age-related disconnections showed increased functional connectivity as a function of aerobic fitness level. Finally, we examine the hypothesis that functional connectivity in the DMN is one source of variance in the relationship between aerobic fitness and cognition. Results demonstrate instances of both specific and global DMN connectivity mediating the relationship between fitness and cognition. We provide the first evidence for functional connectivity as a source of variance in the association between aerobic fitness and cognition, and discuss results in the context of neurobiological theories of cognitive aging and disease.
doi:10.1016/j.neuropsychologia.2010.01.005
PMCID: PMC3708614  PMID: 20079755
cognitive aging; fMRI; functional connectivity; aerobic exercise; executive function; spatial memory
3.  Plasticity of Brain Networks in a Randomized Intervention Trial of Exercise Training in Older Adults 
Research has shown the human brain is organized into separable functional networks during rest and varied states of cognition, and that aging is associated with specific network dysfunctions. The present study used functional magnetic resonance imaging (fMRI) to examine low-frequency (0.008 < f < 0.08 Hz) coherence of cognitively relevant and sensory brain networks in older adults who participated in a 1-year intervention trial, comparing the effects of aerobic and non-aerobic fitness training on brain function and cognition. Results showed that aerobic training improved the aging brain's resting functional efficiency in higher-level cognitive networks. One year of walking increased functional connectivity between aspects of the frontal, posterior, and temporal cortices within the Default Mode Network and a Frontal Executive Network, two brain networks central to brain dysfunction in aging. Length of training was also an important factor. Effects in favor of the walking group were observed only after 12 months of training, compared to non-significant trends after 6 months. A non-aerobic stretching and toning group also showed increased functional connectivity in the DMN after 6 months and in a Frontal Parietal Network after 12 months, possibly reflecting experience-dependent plasticity. Finally, we found that changes in functional connectivity were behaviorally relevant. Increased functional connectivity was associated with greater improvement in executive function. Therefore the study provides the first evidence for exercise-induced functional plasticity in large-scale brain systems in the aging brain, using functional connectivity techniques, and offers new insight into the role of aerobic fitness in attenuating age-related brain dysfunction.
doi:10.3389/fnagi.2010.00032
PMCID: PMC2947936  PMID: 20890449
exercise; aging; functional connectivity; fMRI; default mode network; executive function; aerobic fitness
4.  Cardiorespiratory Fitness and Attentional Control in the Aging Brain 
A growing body of literature provides evidence for the prophylactic influence of cardiorespiratory fitness on cognitive decline in older adults. This study examined the association between cardiorespiratory fitness and recruitment of the neural circuits involved in an attentional control task in a group of healthy older adults. Employing a version of the Stroop task, we examined whether higher levels of cardiorespiratory fitness were associated with an increase in activation in cortical regions responsible for imposing attentional control along with an up-regulation of activity in sensory brain regions that process task-relevant representations. Higher fitness levels were associated with better behavioral performance and an increase in the recruitment of prefrontal and parietal cortices in the most challenging condition, thus providing evidence that cardiorespiratory fitness is associated with an increase in the recruitment of the anterior processing regions. There was a top-down modulation of extrastriate visual areas that process both task-relevant and task-irrelevant attributes relative to the baseline. However, fitness was not associated with differential activation in the posterior processing regions, suggesting that fitness enhances attentional function by primarily influencing the neural circuitry of anterior cortical regions. This study provides novel evidence of a differential association of fitness with anterior and posterior brain regions, shedding further light onto the neural changes accompanying cardiorespiratory fitness.
doi:10.3389/fnhum.2010.00229
PMCID: PMC3024830  PMID: 21267428
cardiorespiratory fitness; Stroop task; cognitive and attentional control

Results 1-4 (4)