PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-9 (9)
 

Clipboard (0)
None
Journals
Year of Publication
1.  Neuroplasticity and functional recovery in multiple sclerosis 
Nature reviews. Neurology  2012;8(11):635-646.
The development of therapeutic strategies that promote functional recovery is a major goal of multiple sclerosis (MS) research. Neuroscientific and methodological advances have improved our understanding of the brain’s recovery from damage, generating novel hypotheses for potential targets or modes of intervention and laying the foundation for the development of scientifically informed strategies promoting recovery in interventional studies. This Review aims to encourage the transition from characterization of recovery mechanisms to the development of strategies that promote recovery in MS. We discuss current evidence for functional reorganization that underlies recovery and its implications for development of new recovery-oriented strategies in MS. Promotion of functional recovery requires an improved understanding of recovery mechanisms modulated by interventions and the development of reliable measures of therapeutic effects. As imaging methods can be used to measure functional and structural alterations associated with recovery, this Review discusses their use as reliable markers to measure the effects of interventions.
doi:10.1038/nrneurol.2012.179
PMCID: PMC3770511  PMID: 22986429
2.  Visualization of altered neurovascular coupling in chronic stroke patients using multimodal functional MRI 
Evaluation of cortical reorganization in chronic stroke patients requires methods to accurately localize regions of neuronal activity. Blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) is frequently employed; however, BOLD contrast depends on specific coupling relationships between the cerebral metabolic rate of oxygen (CMRO2), cerebral blood flow (CBF), and volume (CBV), which may not exist following stroke. The aim of this study was to understand whether CBF-weighted (CBFw) and CBV-weighted (CBVw) fMRI could be used in sequence with BOLD to characterize neurovascular coupling mechanisms poststroke. Chronic stroke patients (n=11) with motor impairment and age-matched controls (n=11) performed four sets of unilateral motor tasks (60 seconds/30 seconds off/on) during CBFw, CBVw, and BOLD fMRI acquisition. While control participants elicited mean BOLD, CBFw, and CBVw responses in motor cortex (P<0.01), patients showed only mean changes in CBF (P<0.01) and CBV (P<0.01), but absent mean BOLD responses (P=0.20). BOLD intersubject variability was consistent with differing coupling indices between CBF, CBV, and CMRO2. Thus, CBFw and/or CBVw fMRI may provide crucial information not apparent from BOLD in these patients. A table is provided outlining distinct vascular and metabolic uncoupling possibilities that elicit different BOLD responses, and the strengths and limitations of the multimodal protocol are summarized.
doi:10.1038/jcbfm.2012.105
PMCID: PMC3493993  PMID: 22828998
arterial spin labeling; BOLD; cerebral blood flow; cerebral blood volume; cerebrovascular disease; neurovascular coupling
3.  Relating Brain Damage to Brain Plasticity in Patients With Multiple Sclerosis 
Background
Failure of adaptive plasticity with increasing pathology is suggested to contribute to progression of disability in multiple sclerosis (MS). However, functional impairments can be reduced with practice, suggesting that brain plasticity is preserved even in patients with substantial damage.
Objective
Here, functional magnetic resonance imaging (fMRI) was used to probe systems-level mechanisms of brain plasticity associated with improvements in visuomotor performance in MS patients and related to measures of microstructural damage.
Methods
23 MS patients and 12 healthy controls underwent brain fMRI during the first practice session of a visuomotor task (short-term practice) and after 2 weeks of daily practice with the same task (longer-term practice). Participants also underwent a structural brain MRI scan.
Results
Patients performed more poorly than controls at baseline. Nonetheless, with practice, patients showed performance improvements similar to controls and independent of the extent of MRI measures of brain pathology. Different relationships between performance improvements and activations were found between groups: greater short-term improvements were associated with lower activation in the sensorimotor, posterior cingulate, and parahippocampal cortices for patients, whereas greater long-term improvements correlated with smaller activation reductions in the visual cortex of controls.
Conclusions
Brain plasticity for visuomotor practice is preserved in MS patients despite a high burden of cerebral pathology. Cognitive systems different from those acting in controls contribute to this plasticity in patients. These findings challenge the notion that increasing pathology is accompanied by an outright failure of adaptive plasticity, supporting a neuroscientific rationale for recovery-oriented strategies even in chronically disabled patients.
doi:10.1177/1545968311433208
PMCID: PMC3674542  PMID: 22328685
4.  Tools of the trade: psychophysiological interactions and functional connectivity 
Psychophysiological interactions (PPIs) analysis is a method for investigating task-specific changes in the relationship between activity in different brain areas, using functional magnetic resonance imaging (fMRI) data. Specifically, PPI analyses identify voxels in which activity is more related to activity in a seed region of interest (seed ROI) in a given psychological context, such as during attention or in the presence of emotive stimuli. In this tutorial, we aim to give a simple conceptual explanation of how PPI analysis works, in order to assist readers in planning and interpreting their own PPI experiments.
doi:10.1093/scan/nss055
PMCID: PMC3375893  PMID: 22569188
psychophysiological interactions; PPI; functional connectivity; resting state
5.  Human Structural Plasticity at Record Speed 
Neuron  2012;73(6):1058-1060.
How rapidly does learning shape our brains? A new study using diffusion magnetic resonance imaging in both humans and rats suggests that just two hours of spatial learning is sufficient to change brain structure.
doi:10.1016/j.neuron.2012.03.001
PMCID: PMC3353540  PMID: 22445333
6.  Relationships between functional and structural corticospinal tract integrity and walking post stroke 
Clinical Neurophysiology  2012;123(12):2422-2428.
Highlights
► We investigated the relationship between walking impairment after stroke and integrity of the corticospinal tract (CST). ► We used transcranial magnetic stimulation and diffusion tensor imaging to assess CST integrity. ► We demonstrate that patients with more ipsilateral connectivity between the unlesioned M1 and the affected leg had more structural damage to their CST.
Objective
Studies on upper limb recovery following stroke have highlighted the importance of the structural and functional integrity of the corticospinal tract (CST) in determining clinical outcomes. However, such relationships have not been fully explored for the lower limb. We aimed to test whether variation in walking impairment was associated with variation in the structural or functional integrity of the CST.
Methods
Transcranial magnetic stimulation was used to stimulate each motor cortex while EMG recordings were taken from the vastus lateralis (VL) bilaterally; these EMG measures were used to calculate both ipsilateral and contralateral recruitment curves for each lower limb. The slope of these recruitment curves was used to examine the strength of functional connectivity from the motor cortex in each hemisphere to the lower limbs in chronic stroke patients and to calculate a ratio between ipsilateral and contralateral outputs referred to as the functional connectivity ratio (FCR). The structural integrity of the CST was assessed using diffusion tensor MRI to measure the asymmetry in fractional anisotropy (FA) of the internal capsule. Lower limb impairment and walking speed were also measured.
Results
The FCR for the paretic leg correlated with walking impairment, such that greater relative ipsilateral connectivity was associated with slower walking speeds. Asymmetrical FA values, reflecting reduced structural integrity of the lesioned CST, were associated with greater walking impairment. FCR and FA asymmetry were strongly positively correlated with each other.
Conclusions
Patients with relatively greater ipsilateral connectivity between the contralesional motor cortex and the paretic lower limb were more behaviorally impaired and had more structural damage to their ipsilesional hemisphere CST.
Significance
Measures of structural and functional damage may be useful in the selection of therapeutic strategies, allowing for more tailored and potentially more beneficial treatments.
doi:10.1016/j.clinph.2012.04.026
PMCID: PMC3778984  PMID: 22717679
CST, corticospinal tract; DTI, diffusion tensor imaging; FA, fractional anisotropy; FCR, functional connectivity ratio; M1, primary motor cortex; TMS, transcranial magnetic stimulation; VL, vastus lateralis; Stroke; Locomotion; Motor recovery; TMS; DTI
7.  A combined post-mortem magnetic resonance imaging and quantitative histological study of multiple sclerosis pathology 
Brain  2012;135(10):2938-2951.
Multiple sclerosis is a chronic inflammatory neurological condition characterized by focal and diffuse neurodegeneration and demyelination throughout the central nervous system. Factors influencing the progression of pathology are poorly understood. One hypothesis is that anatomical connectivity influences the spread of neurodegeneration. This predicts that measures of neurodegeneration will correlate most strongly between interconnected structures. However, such patterns have been difficult to quantify through post-mortem neuropathology or in vivo scanning alone. In this study, we used the complementary approaches of whole brain post-mortem magnetic resonance imaging and quantitative histology to assess patterns of multiple sclerosis pathology. Two thalamo-cortical projection systems were considered based on their distinct neuroanatomy and their documented involvement in multiple sclerosis: lateral geniculate nucleus to primary visual cortex and mediodorsal nucleus of the thalamus to prefrontal cortex. Within the anatomically distinct thalamo-cortical projection systems, magnetic resonance imaging derived cortical thickness was correlated significantly with both a measure of myelination in the connected tract and a measure of connected thalamic nucleus cell density. Such correlations did not exist between these markers of neurodegeneration across different thalamo-cortical systems. Magnetic resonance imaging lesion analysis depicted clearly demarcated subcortical lesions impinging on the white matter tracts of interest; however, quantitation of the extent of lesion-tract overlap failed to demonstrate any appreciable association with the severity of markers of diffuse pathology within each thalamo-cortical projection system. Diffusion-weighted magnetic resonance imaging metrics in both white matter tracts were correlated significantly with a histologically derived measure of tract myelination. These data demonstrate for the first time the relevance of functional anatomical connectivity to the spread of multiple sclerosis pathology in a ‘tract-specific’ pattern. Furthermore, the persisting relationship between metrics from post-mortem diffusion-weighted magnetic resonance imaging and histological measures from fixed tissue further validates the potential of imaging for future neuropathological studies.
doi:10.1093/brain/aws242
PMCID: PMC3470716  PMID: 23065787
multiple sclerosis; post-mortem imaging; diffusion imaging; white matter tracts; neurodegeneration
8.  The Effects of Aerobic Activity on Brain Structure 
Aerobic activity is a powerful stimulus for improving mental health and for generating structural changes in the brain. We review the literature documenting these structural changes and explore exactly where in the brain these changes occur as well as the underlying substrates of the changes including neural, glial, and vasculature components. Aerobic activity has been shown to produce different types of changes in the brain. The presence of novel experiences or learning is an especially important component in how these changes are manifest. We also discuss the distinct time courses of structural brain changes with both aerobic activity and learning as well as how these effects might differ in diseased and elderly groups.
doi:10.3389/fpsyg.2012.00086
PMCID: PMC3311131  PMID: 22470361
exercise; plasticity; hippocampus; neurogenesis; angiogenesis; learning; environmental enrichment; aging
9.  Structural correlates of skilled performance on a motor sequence task 
The brain regions functionally engaged in motor sequence performance are well-established, but the structural characteristics of these regions and the fiber pathways involved have been less well studied. In addition, relatively few studies have combined multiple magnetic resonance imaging (MRI) and behavioral performance measures in the same sample. Therefore, the current study used diffusion tensor imaging (DTI), probabilistic tractography, and voxel-based morphometry (VBM) to determine the structural correlates of skilled motor performance. Further, we compared these findings with fMRI results in the same sample. We correlated final performance and rate of improvement measures on a temporal motor sequence task (TMST) with skeletonized fractional anisotropy (FA) and whole brain gray matter (GM) volume. Final synchronization performance was negatively correlated with FA in white matter (WM) underlying bilateral sensorimotor cortex—an effect that was mediated by a positive correlation with radial diffusivity. Multi-fiber tractography indicated that this region contained crossing fibers from the corticospinal tract (CST) and superior longitudinal fasciculus (SLF). The identified SLF pathway linked parietal and auditory cortical regions that have been shown to be functionally engaged in this task. Thus, we hypothesize that enhanced synchronization performance on this task may be related to greater fiber integrity of the SLF. Rate of improvement on synchronization was positively correlated with GM volume in cerebellar lobules HVI and V—regions that showed training-related decreases in activity in the same sample. Taken together, our results link individual differences in brain structure and function to motor sequence performance on the same task. Further, our study illustrates the utility of using multiple MR measures and analysis techniques to specify the interpretation of structural findings.
doi:10.3389/fnhum.2012.00289
PMCID: PMC3486688  PMID: 23125826
superior longitudinal fasciculus; individual differences; motor sequence performance; fractional anisotropy; diffusion tensor imaging; gray matter volume

Results 1-9 (9)