PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None
Journals
Authors
Year of Publication
Document Types
1.  Studying the Effects of Transcranial Direct-Current Stimulation in Stroke Recovery Using Magnetic Resonance Imaging 
Transcranial direct-current stimulation (tDCS) is showing increasing promise as an adjunct therapy in stroke rehabilitation. However questions still remain concerning its mechanisms of action, which currently limit its potential. Magnetic resonance (MR) techniques are increasingly being applied to understand the neural effects of tDCS. Here, we review the MR evidence supporting the use of tDCS to aid recovery after stroke and discuss the important open questions that remain.
doi:10.3389/fnhum.2013.00857
PMCID: PMC3859898  PMID: 24376413
transcranial direct-current stimulation; stroke recovery; MRI; humans; MRS spectroscopy
2.  Structural correlates of skilled performance on a motor sequence task 
The brain regions functionally engaged in motor sequence performance are well-established, but the structural characteristics of these regions and the fiber pathways involved have been less well studied. In addition, relatively few studies have combined multiple magnetic resonance imaging (MRI) and behavioral performance measures in the same sample. Therefore, the current study used diffusion tensor imaging (DTI), probabilistic tractography, and voxel-based morphometry (VBM) to determine the structural correlates of skilled motor performance. Further, we compared these findings with fMRI results in the same sample. We correlated final performance and rate of improvement measures on a temporal motor sequence task (TMST) with skeletonized fractional anisotropy (FA) and whole brain gray matter (GM) volume. Final synchronization performance was negatively correlated with FA in white matter (WM) underlying bilateral sensorimotor cortex—an effect that was mediated by a positive correlation with radial diffusivity. Multi-fiber tractography indicated that this region contained crossing fibers from the corticospinal tract (CST) and superior longitudinal fasciculus (SLF). The identified SLF pathway linked parietal and auditory cortical regions that have been shown to be functionally engaged in this task. Thus, we hypothesize that enhanced synchronization performance on this task may be related to greater fiber integrity of the SLF. Rate of improvement on synchronization was positively correlated with GM volume in cerebellar lobules HVI and V—regions that showed training-related decreases in activity in the same sample. Taken together, our results link individual differences in brain structure and function to motor sequence performance on the same task. Further, our study illustrates the utility of using multiple MR measures and analysis techniques to specify the interpretation of structural findings.
doi:10.3389/fnhum.2012.00289
PMCID: PMC3486688  PMID: 23125826
superior longitudinal fasciculus; individual differences; motor sequence performance; fractional anisotropy; diffusion tensor imaging; gray matter volume

Results 1-2 (2)