PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None
Journals
Year of Publication
Document Types
1.  Gray matter volume is associated with rate of subsequent skill learning after a long term training intervention 
Neuroimage  2014;96(100):158-166.
The ability to predict learning performance from brain imaging data has implications for selecting individuals for training or rehabilitation interventions. Here, we used structural MRI to test whether baseline variations in gray matter (GM) volume correlated with subsequent performance after a long-term training of a complex whole-body task. 44 naïve participants were scanned before undertaking daily juggling practice for 6 weeks, following either a high intensity or a low intensity training regime. To assess performance across the training period participants' practice sessions were filmed. Greater GM volume in medial occipito-parietal areas at baseline correlated with steeper learning slopes. We also tested whether practice time or performance outcomes modulated the degree of structural brain change detected between the baseline scan and additional scans performed immediately after training and following a further 4 weeks without training. Participants with better performance had higher increases in GM volume during the period following training (i.e., between scans 2 and 3) in dorsal parietal cortex and M1. When contrasting brain changes between the practice intensity groups, we did not find any straightforward effects of practice time though practice modulated the relationship between performance and GM volume change in dorsolateral prefrontal cortex. These results suggest that practice time and performance modulate the degree of structural brain change evoked by long-term training regimes.
Highlights
•Inter-individual differences in brain structure correlate with subsequent performance outcome.•Performance outcome plays an important role in positive structural brain change.•Performance outcome and amount of practice modulate structural brain change.
doi:10.1016/j.neuroimage.2014.03.056
PMCID: PMC4075341  PMID: 24680712
Structural plasticity; Skill learning; MRI
2.  Distinction of seropositive NMO spectrum disorder and MS brain lesion distribution 
Neurology  2013;80(14):1330-1337.
Objective:
Neuromyelitis optica and its spectrum disorder (NMOSD) can present similarly to relapsing-remitting multiple sclerosis (RRMS). Using a quantitative lesion mapping approach, this research aimed to identify differences in MRI brain lesion distribution between aquaporin-4 antibody–positive NMOSD and RRMS, and to test their diagnostic potential.
Methods:
Clinical brain MRI sequences for 44 patients with aquaporin-4 antibody–positive NMOSD and 50 patients with RRMS were examined for the distribution and morphology of brain lesions. T2 lesion maps were created for each subject allowing the quantitative comparison of the 2 conditions with lesion probability and voxel-wise analysis.
Results:
Sixty-three percent of patients with NMOSD had brain lesions and of these 27% were diagnostic of multiple sclerosis. Patients with RRMS were significantly more likely to have lesions adjacent to the body of the lateral ventricle than patients with NMOSD. Direct comparison of the probability distributions and the morphologic attributes of the lesions in each group identified criteria of “at least 1 lesion adjacent to the body of the lateral ventricle and in the inferior temporal lobe; or the presence of a subcortical U-fiber lesion; or a Dawson's finger-type lesion,” which could distinguish patients with multiple sclerosis from those with NMOSD with 92% sensitivity, 96% specificity, 98% positive predictive value, and 86% negative predictive value.
Conclusion:
Careful inspection of the distribution and morphology of MRI brain lesions can distinguish RRMS and NMOSD.
doi:10.1212/WNL.0b013e3182887957
PMCID: PMC3656462  PMID: 23486868
3.  A combined post-mortem magnetic resonance imaging and quantitative histological study of multiple sclerosis pathology 
Brain  2012;135(10):2938-2951.
Multiple sclerosis is a chronic inflammatory neurological condition characterized by focal and diffuse neurodegeneration and demyelination throughout the central nervous system. Factors influencing the progression of pathology are poorly understood. One hypothesis is that anatomical connectivity influences the spread of neurodegeneration. This predicts that measures of neurodegeneration will correlate most strongly between interconnected structures. However, such patterns have been difficult to quantify through post-mortem neuropathology or in vivo scanning alone. In this study, we used the complementary approaches of whole brain post-mortem magnetic resonance imaging and quantitative histology to assess patterns of multiple sclerosis pathology. Two thalamo-cortical projection systems were considered based on their distinct neuroanatomy and their documented involvement in multiple sclerosis: lateral geniculate nucleus to primary visual cortex and mediodorsal nucleus of the thalamus to prefrontal cortex. Within the anatomically distinct thalamo-cortical projection systems, magnetic resonance imaging derived cortical thickness was correlated significantly with both a measure of myelination in the connected tract and a measure of connected thalamic nucleus cell density. Such correlations did not exist between these markers of neurodegeneration across different thalamo-cortical systems. Magnetic resonance imaging lesion analysis depicted clearly demarcated subcortical lesions impinging on the white matter tracts of interest; however, quantitation of the extent of lesion-tract overlap failed to demonstrate any appreciable association with the severity of markers of diffuse pathology within each thalamo-cortical projection system. Diffusion-weighted magnetic resonance imaging metrics in both white matter tracts were correlated significantly with a histologically derived measure of tract myelination. These data demonstrate for the first time the relevance of functional anatomical connectivity to the spread of multiple sclerosis pathology in a ‘tract-specific’ pattern. Furthermore, the persisting relationship between metrics from post-mortem diffusion-weighted magnetic resonance imaging and histological measures from fixed tissue further validates the potential of imaging for future neuropathological studies.
doi:10.1093/brain/aws242
PMCID: PMC3470716  PMID: 23065787
multiple sclerosis; post-mortem imaging; diffusion imaging; white matter tracts; neurodegeneration
4.  Diffusion imaging of whole, post-mortem human brains on a clinical MRI scanner 
Neuroimage  2011;57(1-4):167-181.
Diffusion imaging of post mortem brains has great potential both as a reference for brain specimens that undergo sectioning, and as a link between in vivo diffusion studies and “gold standard” histology/dissection. While there is a relatively mature literature on post mortem diffusion imaging of animals, human brains have proven more challenging due to their incompatibility with high-performance scanners. This study presents a method for post mortem diffusion imaging of whole, human brains using a clinical 3-Tesla scanner with a 3D segmented EPI spin-echo sequence. Results in eleven brains at 0.94 × 0.94 × 0.94 mm resolution are presented, and in a single brain at 0.73 × 0.73 × 0.73 mm resolution. Region-of-interest analysis of diffusion tensor parameters indicate that these properties are altered compared to in vivo (reduced diffusivity and anisotropy), with significant dependence on post mortem interval (time from death to fixation). Despite these alterations, diffusion tractography of several major tracts is successfully demonstrated at both resolutions. We also report novel findings of cortical anisotropy and partial volume effects.
Research highlights
► Acquisition and processing protocols for diffusion MRI of post-mortem human brains. ► Effect of post-mortem and scan intervals on diffusion indices. ► Tractography in post-mortem human brains. ► Radial diffusion anisotropy in cortical gray matter.
doi:10.1016/j.neuroimage.2011.03.070
PMCID: PMC3115068  PMID: 21473920
Diffusion tensor imaging; Tractography; Post mortem; Human; Brain

Results 1-4 (4)