PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
1.  Stochastic humoral immunity to Bacillus anthracis Protective Antigen: Identification of anti-peptide IgG correlating with seroconversion to Lethal Toxin neutralization 
Vaccine  2013;31(14):1856-1863.
A substantial fraction of individuals vaccinated against anthrax have low to immeasurable levels of serum Lethal Toxin (LeTx)-neutralizing activity. The only known correlate of protection against Bacillus anthracis in the currently licensed vaccine is magnitude of the IgG response to Protective Antigen (PA); however, some individuals producing high serum levels of anti-PA IgG fail to neutralize LeTx in vitro. This suggests that non-protective humoral responses to PA may be immunodominant in some individuals. Therefore, to better understand why anthrax vaccination elicits heterogeneous levels of protection, this study was designed to elucidate the relationship between anti-PA fine specificity and LeTx neutralization in response to PA vaccination. Inbred mice immunized with recombinant PA produced high levels of anti-PA IgG and neutralized LeTx in vitro and in vivo. Decapeptide binding studies using pooled sera reproducibly identified the same 9 epitopes. Unexpectedly, sera from individual mice revealed substantial heterogeneity in the anti-PA IgG and LeTx neutralization responses, despite relative genetic homogeneity, shared environment and exposure to the same immunogen. This heterogeneity permitted the identification of specificities that correlate with LeTx-neutralizing activity. IgG binding to six decapeptides comprising two PA epitopes, located in domains I and IV, significantly correlate with seroconversion to LeTx neutralization. These results indicate that stochastic variation in humoral immunity is likely to be a major contributor to the general problem of heterogeneity in vaccine responsiveness and suggest that vaccine effectiveness could be improved by approaches that focus the humoral response toward protective epitopes in a greater fraction of vaccinees.
doi:10.1016/j.vaccine.2013.01.040
PMCID: PMC3614092  PMID: 23415781
Bacillus anthracis; Protective antigen; Vaccine; B cell epitope; Mice
2.  Human Monoclonal Antibodies Generated Following Vaccination with AVA Provide Neutralization by Blocking Furin Cleavage but not by Preventing Oligomerization 
Vaccine  2012;30(28):4276-4283.
In order to identify the combination of antibody-mediated mechanisms of neutralization that result from vaccination with anthrax vaccine adsorbed (AVA), we isolated antibody secreting cells from a single donor seven days after booster vaccination with AVA and generated nine fully human monoclonal antibodies (hmAb) with high specificity for protective antigen (PA). Two of the antibodies were able to neutralize lethal toxin in vitro at low concentrations (IC50: p6C01, 0.12 µg/ml and p6F01, 0.45 µg/ml). Passive transfer of either of these hmAbs to A/J mice prior to challenge with lethal toxin conferred 80–90% protection. We demonstrate that hmAb p6C01 is neutralizing by preventing furin cleavage of PA in a dose-dependent manner, but the mechanism of p6F01 is unclear. Three additional antibodies were found to bind to domain 3 of PA and prevent oligomerization, although they did not confer significant protection in vivo and showed a significant prozone-like effect in vitro. These fully human antibodies provide insight into the neutralizing response to AVA for future subunit vaccine and passive immunotherapeutic cocktail design.
doi:10.1016/j.vaccine.2012.03.002
PMCID: PMC3367042  PMID: 22425791
anthrax; Anthrax Vaccine Adsorbed; human monoclonal antibodies; passive immunotherapeutics; protective antigen
3.  Anthrax Vaccination Induced Anti-Lethal Factor IgG: Fine Specificity and Neutralizing Capacity 
Vaccine  2011;29(20):3670-3678.
The efficacy biomarker of the currently licensed anthrax vaccine (AVA) is based on quantity and neutralizing capacity of anti-Protective Antigen (anti-PA) antibodies. However, animal studies have demonstrated that antibodies to Lethal Factor (LF) can provide protection against in vivo bacterial spore challenges. Improved understanding of the fine specificities of humoral immune responses that provide optimum neutralization capacity may enhance the efficacy of future passive immune globulin preparations to treat and prevent inhalation anthrax morbidity and mortality. This study (n = 1000) was designed to identify AVA vaccinated individuals who generate neutralizing antibodies and to determine what specificities correlate with protection. The number of vaccine doses, years post vaccination, and PA titer were associated with in vitro neutralization, reinforcing previous reports. In addition, African American individuals had lower serologic neutralizing activity than European Americans, suggesting a genetic role in the generation of these neutralizing antibodies. Of the vaccinated individuals, only 69 (6.9%) had moderate levels of anti-LF IgG compared to 244 (24.4%) with low and 687 (68.7%) with extremely low levels of IgG antibodies to LF. Using overlapping decapeptide analysis, we identified six common LF antigenic regions targeted by those individuals with moderate levels of antibodies to LF and high in vitro toxin neutralizing activity. Affinity purified antibodies directed against antigenic epitopes within the PA binding and ADP-ribotransferase-like domains of LF were able to protect mice against lethal toxin challenge. Findings from these studies have important implications for vaccine design and immunotherapeutic development.
doi:10.1016/j.vaccine.2011.03.011
PMCID: PMC3233230  PMID: 21420416
Bacillus anthracis; Anthrax; Anthrax Vaccine Adsorbed; Lethal Factor; Protective Antigen; correlate of protection
4.  Antibody quantity versus quality after influenza vaccination 
Vaccine  2009;27(45):6358-6362.
The correlates for protection against influenza infection are incompletely characterized. We have applied an ELISA strategy that distinguishes antibodies against native viral surface antigens (potentially neutralizing) from antibodies directed against internal and denatured viral proteins (not neutralizing) to three groups of vaccinated subjects: (1) participants in a study of repeated annual vaccination (2) elderly subjects and (3) patients with Systemic Lupus Erythematosus compared to control subjects. Antibody increase after vaccination was inversely related to the level of pre-existing antibodies in all groups; most subjects had significant initial antibody levels and showed little increase in amount of antibody after vaccination, but the avidity of their serum antibodies tended to increase. Antibodies against denatured virus proteins varied with vaccine formulation; vaccines that are more recent have less total protein for the same amount of native hemagglutinin. We propose an index consisting of rank order of antibody level plus antibody avidity, both measured against native virus, plus hemagglutination-inhibition antibody titer, as a useful measure of immunity against influenza.
doi:10.1016/j.vaccine.2009.06.090
PMCID: PMC2765411  PMID: 19840673

Results 1-4 (4)