PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
1.  Anti-peptidoglycan antibodies and Fcγ receptors are the key mediators of inflammation in Gram-positive sepsis1 
Gram-positive bacteria are an important public health problem, but it is unclear how they cause systemic inflammation in sepsis. Our previous work showed that peptidoglycan (PGN) induced proinflammatory cytokines in human cells by binding to an unknown extracellular receptor followed by phagocytosis leading to the generation of NOD ligands. Here, we used flow cytometry to identify host factors that supported PGN binding to immune cells. PGN binding required plasma and plasma from all tested healthy donors contained IgG recognizing PGN. Plasma depleted of IgG or of anti-PGN antibodies did not support PGN binding or PGN-triggered cytokine production. Adding back intact but not F(ab’)2 IgG restored binding and cytokine production. Transfection of HEK293 cells with FcγRIIA enabled PGN binding and phagocytosis. These data establish a key role for anti-PGN IgG and FcγRs in supporting inflammation to a major structural element of Gram-positive bacteria and suggest anti-PGN IgG contributes to human pathology in Gram-positive sepsis.
doi:10.4049/jimmunol.1201302
PMCID: PMC3424298  PMID: 22815288
Peptidoglycan; Fcγ receptor; phagocytosis; nucleotide oligomerization domain; inflammation
2.  Autoimmunity as a Result of Escape from RNA Surveillance 
In previous studies we detected a frame shift mutation in the gene encoding the autoantigen La of a patient with systemic lupus erythematosus. The mutant La mRNA contains a premature termination codon. mRNAs that prematurely terminate translation should be eliminated by RNA quality control mechanisms. As we find Abs specific for the mutant La form in about 30% of sera from anti-La positive patients we expected that mutant La mRNAs circumvent RNA control and the expression of mutant La protein could become harmful. Indeed, realtime PCR, immunostaining, and immunoblotting data of mice transgenic for the mutant La form show that mutant La mRNAs are not repressed in these animals and are translated to mutant La protein. In addition to the mutant La protein, we detected a minor portion of native human La in the mutant La transgenic mice. Therefore, ribosomal frame shifting may allow the mutant La mRNA to escape from RNA control. Interestingly, expression of the mutant La mRNA results in a lupus like disease in the experimental mice. Consequently, escape of mutant La mRNA from RNA control can have two effects: It (i) results in the expression of an immunogenic (neo)epitope, and (ii) predisposes to autoimmunity.
PMCID: PMC2206679  PMID: 16849479

Results 1-2 (2)