PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None
Journals
Year of Publication
Document Types
1.  The Lupus Family Registry and Repository 
Rheumatology (Oxford, England)  2010;50(1):47-59.
The Lupus Family Registry and Repository (LFRR) was established with the goal of assembling and distributing materials and data from families with one or more living members diagnosed with SLE, in order to address SLE genetics. In the present article, we describe the problems and solutions of the registry design and biometric data gathering; the protocols implemented to guarantee data quality and protection of participant privacy and consent; and the establishment of a local and international network of collaborators. At the same time, we illustrate how the LFRR has enabled progress in lupus genetics research, answering old scientific questions while laying out new challenges in the elucidation of the biologic mechanisms that underlie disease pathogenesis. Trained staff ascertain SLE cases, unaffected family members and population-based controls, proceeding in compliance with the relevant laws and standards; participant consent and privacy are central to the LFRR’s effort. Data, DNA, serum, plasma, peripheral blood and transformed B-cell lines are collected and stored, and subject to strict quality control and safety measures. Coded data and materials derived from the registry are available for approved scientific users. The LFRR has contributed to the discovery of most of the 37 genetic associations now known to contribute to lupus through 104 publications. The LFRR contains 2618 lupus cases from 1954 pedigrees that are being studied by 76 approved users and their collaborators. The registry includes difficult to obtain populations, such as multiplex pedigrees, minority patients and affected males, and constitutes the largest collection of lupus pedigrees in the world. The LFRR is a useful resource for the discovery and characterization of genetic associations in SLE.
doi:10.1093/rheumatology/keq302
PMCID: PMC3307518  PMID: 20864496
Systemic lupus erythematosus; Registry; Repository; Autoimmune diseases; Genetics; Heritability; Genome-wide association studies; Linkage analysis; Minorities; Women
2.  Recent Advances and Opportunities in Research on Lupus: Environmental Influences and Mechanisms of Disease 
Environmental Health Perspectives  2008;116(6):695-702.
Objectives
In this review we summarize research on mechanisms through which environmental agents may affect the pathogenesis of lupus, discuss three exposures that have been the focus of research in this area, and propose recommendations for new research initiatives.
Data sources and synthesis
We examined studies pertaining to key mechanistic events and specific exposures. Apoptosis leading to increased production or decreased clearance of immunogenic intracellular self-antigens and defective apoptosis of autoreactive immune cells both have been implicated in the loss of self-tolerance. The adjuvant or bystander effect is also needed to produce a sustained autoimmune response. Activation of toll-like receptors is one mechanism through which these effects may occur. Abnormal DNA methylation may also contribute to the pathogenesis of lupus. Each of the specific exposures we examined—Epstein-Barr virus, silica, and trichloroethylene—has been shown, in humans or in mice, to act upon one or more of these pathogenic steps. Specific recommendations for the continued advancement of our understanding of environmental influences on lupus and other autoimmune diseases include the development and use of mouse models with varying degrees of penetrance and manifestations of disease, identification of molecular or physiologic targets of specific exposures, development and use of improved exposure assessment methodologies, and multisite collaborations designed to examine understudied environmental exposures in humans.
Conclusions
The advances made in the past decade concerning our understanding of mechanisms involved in the development of lupus and the influence of environmental agents on this process provide a strong foundation for further developments in this field.
doi:10.1289/ehp.11092
PMCID: PMC2430222  PMID: 18560522
adjuvant effect; apoptosis; autoimmune diseases; bystander effect; demethylation; epigenetics; Epstein-Barr virus; silica; systemic lupus erythematosus; trichloroethylene

Results 1-2 (2)