PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-6 (6)
 

Clipboard (0)
None
Journals
Year of Publication
1.  A second locus for Aicardi‐Goutières syndrome at chromosome 13q14–21 
Journal of Medical Genetics  2005;43(5):444-450.
Background
Aicardi‐Goutières syndrome (AGS) is an autosomal recessive, early onset encephalopathy characterised by calcification of the basal ganglia, chronic cerebrospinal fluid lymphocytosis, and negative serological investigations for common prenatal infections. AGS may result from a perturbation of interferon α metabolism. The disorder is genetically heterogeneous with approximately 50% of families mapping to the first known locus at 3p21 (AGS1).
Methods
A genome‐wide scan was performed in 10 families with a clinical diagnosis of AGS in whom linkage to AGS1 had been excluded. Higher density genotyping in regions of interest was also undertaken using the 10 mapping pedigrees and seven additional AGS families.
Results
Our results demonstrate significant linkage to a second AGS locus (AGS2) at chromosome 13q14–21 with a maximum multipoint heterogeneity logarithm of the odds (LOD) score of 5.75 at D13S768. The AGS2 locus lies within a 4.7 cM region as defined by a 1 LOD‐unit support interval.
Conclusions
We have identified a second AGS disease locus and at least one further locus. As in a number of other conditions, genetic heterogeneity represents a significant obstacle to gene identification in AGS. The localisation of AGS2 represents an important step in this process.
doi:10.1136/jmg.2005.031880
PMCID: PMC2649012  PMID: 15908569
AGS2; Aicardi‐Goutières syndrome; interferon α; intracranial calcification; 13q14–21
3.  Physiological upper limits of ventricular cavity size in highly trained adolescent athletes 
Heart  2005;91(4):495-499.
Objectives: To define physiological upper limits of left ventricular (LV) cavity size in trained adolescent athletes.
Design: Cross sectional echocardiographic study.
Setting: British national sports training grounds and Olympic Medical Institute.
Subjects: 900 elite adolescent athletes (77% boys) aged 15.7 (1.2) years participating in ball, racket, and endurance sports and 250 healthy controls matched for age, sex, and size.
Main outcome measures: LV end diastolic cavity size.
Results: Compared with controls, athletes had a larger LV cavity (50.8 (3.7) v 47.9 (3.5) mm), a difference of 6%. The LV cavity was > 54 mm in 18% athletes, whereas none of the controls had an LV cavity > 54 mm. The LV cavity exceeded predicted sizes in 117 (13%) athletes. Among the athletes with LV dilatation, 78% were boys, LV size ranged from 52–60 mm, and left atrial diameter and LV wall thickness were enlarged. Systolic and diastolic function were normal. None of the athletes in the study had an LV cavity size > 60 mm. LV cavity size correlated with age, sex, heart rate, and body surface area.
Conclusion: Highly trained junior athletes usually have only modest increases in LV cavity size. A proportion of trained adolescent athletes have LV cavity size exceeding predicted values but, in absolute terms, LV cavity rarely exceeds 60 mm as in patients with dilated cardiomyopathy. In highly trained adolescent athletes with an LV cavity size > 60 mm and any impairment of systolic or diastolic function, the diagnosis of dilated cardiomyopathy should be considered.
doi:10.1136/hrt.2004.035121
PMCID: PMC1768829  PMID: 15772210
adolescent; elite athlete; athlete’s heart; cardiomyopathy; ventricular cavity dilatation
4.  Identification of a Novel Extracellular Cation-sensing G-protein-coupled Receptor* 
The Journal of biological chemistry  2005;280(48):40201-40209.
The C family G-protein-coupled receptors contain members that sense amino acid and extracellular cations, of which calcium-sensing receptor (CASR) is the prototypic extracellular calcium-sensing receptor. Some cells, such as osteoblasts in bone, retain responsiveness to extracellular calcium in CASR-deficient mice, consistent with the existence of another calcium-sensing receptor. We examined the calcium-sensing properties of GPRC6A, a newly identified member of this family. Alignment of GPRC6A with CASR revealed conservation of both calcium and calcimimetic binding sites. In addition, calcium, magnesium, strontium, aluminum, gadolinium, and the calcimimetic NPS 568 resulted in a dose-dependent stimulation of GPRC6A overexpressed in human embryonic kidney cells 293 cells. Also, osteocalcin, a calcium-binding protein highly expressed in bone, dose-dependently stimulated GPRC6A activity in the presence of calcium but inhibited the calcium-dependent activation of CASR. Coexpression of β-arrestins 1 and 2, regulators of G-protein signaling RGS2 or RGS4, the RhoA inhibitor C3 toxin, the dominant negative Gαq-(305–359) minigene, and pretreatment with pertussis toxin inhibited activation of GPRC6A by extracellular cations. Reverse transcription-PCR analyses showed that mouse GPRC6A is widely expressed in mouse tissues, including bone, calvaria, and the osteoblastic cell line MC3T3-E1. These data suggest that in addition to sensing amino acids, GPRC6A is a cation-, calcimimetic-, and osteocalcin-sensing receptor and a candidate for mediating extracellular calcium-sensing responses in osteoblasts and possibly other tissues.
doi:10.1074/jbc.M505186200
PMCID: PMC1435382  PMID: 16199532
5.  Measuring the fate of plant diversity: towards a foundation for future monitoring and opportunities for urgent action 
Vascular plants are often considered to be among the better known large groups of organisms, but gaps in the available baseline data are extensive, and recent estimates of total known (described) seed plant species range from 200 000 to 422 000. Of these, global assessments of conservation status using International Union for the Conservation of Nature (IUCN) categories and criteria are available for only approximately 10 000 species. In response to recommendations from the Conference of the Parties to the Convention on Biological Diversity to develop biodiversity indicators based on changes in the status of threatened species, and trends in the abundance and distribution of selected species, we examine how existing data, in combination with limited new data collection, can be used to maximum effect. We argue that future work should produce Red List Indices based on a representative subset of plant species so that the limited resources currently available are directed towards redressing taxonomic and geographical biases apparent in existing datasets. Sampling the data held in the world's major herbaria, in combination with Geographical Information Systems techniques, can produce preliminary conservation assessments and help to direct selective survey work using existing field networks to verify distributions and gather population data. Such data can also be used to backcast threats and potential distributions through time. We outline an approach that could result in: (i) preliminary assessments of the conservation status of tens of thousands of species not previously assessed, (ii) significant enhancements in the coverage and representation of plant species on the IUCN Red List, and (iii) repeat and/or retrospective assessments for a significant proportion of these. This would result in more robust Sampled Red List Indices that can be defended as more representative of plant diversity as a whole; and eventually, comprehensive assessments at species level for one or more major families of angiosperms. The combined results would allow scientifically defensible generalizations about the current status of plant diversity by 2010 as well as tentative comments on trends. Together with other efforts already underway, this approach would establish a firmer basis for ongoing monitoring of the status of plant diversity beyond 2010 and a basis for comparison with the trend data available for vertebrates.
doi:10.1098/rstb.2004.1596
PMCID: PMC1569457  PMID: 15814350
global biodiversity; species richness; conservation assessments; extinction risk; IUCN Red List; Living Planet Index
6.  An Innovative Approach to Enhancing the Surveillance Capacity of State-based Diabetes Prevention and Control Programs: The Diabetes Indicators and Data Sources Internet Tool (DIDIT) 
Preventing Chronic Disease  2005;2(3):A14.
The Diabetes Indicators and Data Sources Internet Tool (DIDIT) is an interactive Web-based resource with information on 38 diabetes indicators (e.g., diabetes-associated complications, care, lifestyle) and 12 associated data sources frequently used by state diabetes prevention and control programs. This tool is designed to strengthen the ability of states to conduct diabetes surveillance and to promote consistency in defining and tracking indicators across states. In this way, the DIDIT supports one of the 10 essential public health services: the timely and accurate assessment of public health.
In addition to serving as a central repository of information on diabetes surveillance, the DIDIT also allows users to share experiences of using these indicators and data sources in their diabetes surveillance activities, data analysis, and tracking of diabetes-related objectives stated by Healthy People 2010. The DIDIT is an innovative approach to enhancing public health surveillance at the state and national levels.
PMCID: PMC1364523  PMID: 15963316

Results 1-6 (6)