PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-10 (10)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
1.  Phosphorylation of Enabled by the Drosophila Abelson Tyrosine Kinase Regulates the In Vivo Function and Protein-Protein Interactions of Enabled 
Molecular and Cellular Biology  1998;18(1):152-160.
Drosophila Enabled (Ena) is a member of a family of cytoskeleton-associated proteins including mammalian vasodilator-stimulated phosphoprotein and murine Enabled that regulate actin cytoskeleton assembly. Mutations in Drosophila ena were discovered as dominant genetic suppressors of mutations in the Abelson tyrosine kinase (Abl), suggesting that Ena and Abl function in the same pathway or process. We have identified six tyrosine residues on Ena that are phosphorylated by Abl in vitro and in vivo. Mutation of these phosphorylation sites to phenylalanine partially impaired the ability of Ena to restore viability to ena mutant animals, indicating that phosphorylation is required for optimal Ena function. Phosphorylation of Ena by Abl inhibited the binding of Ena to SH3 domains in vitro, suggesting that one effect of Ena phosphorylation may be to modulate its association with other proteins.
PMCID: PMC121469  PMID: 9418863
2.  Molecular and biochemical characterization of xrs mutants defective in Ku80. 
Molecular and Cellular Biology  1997;17(3):1264-1273.
The gene product defective in radiosensitive CHO mutants belonging to ionizing radiation complementation group 5, which includes the extensively studied xrs mutants, has recently been identified as Ku80, a subunit of the Ku protein and a component of DNA-dependent protein kinase (DNA-PK). Several group 5 mutants, including xrs-5 and -6, lack double-stranded DNA end-binding and DNA-PK activities. In this study, we examined additional xrs mutants at the molecular and biochemical levels. All mutants examined have low or undetectable levels of Ku70 and Ku80 protein, end-binding, and DNA-PK activities. Only one mutant, xrs-6, has Ku80 transcript levels detectable by Northern hybridization, but Ku80 mRNA was detectable by reverse transcription-PCR in most other mutants. Two mutants, xrs-4 and -6, have altered Ku80 transcripts resulting from mutational changes in the genomic Ku80 sequence affecting RNA splicing, indicating that the defects in these mutants lie in the Ku80 gene rather than a gene controlling its expression. Neither of these two mutants has detectable wild-type Ku80 transcript. Since the mutation in both xrs-4 and xrs-6 cells results in severely truncated Ku80 protein, both are likely candidates to be null mutants. Azacytidine-induced revertants of xrs-4 and -6 carried both wild-type and mutant transcripts. The results with these revertants strongly support our model proposed earlier, that CHO-K1 cells carry a copy of the Ku80 gene (XRCC5) silenced by hypermethylation. Site-directed mutagenesis studies indicate that previously proposed ATP-binding and phosphorylation sites are not required for Ku80 activity, whereas N-terminal deletions of more than the first seven amino acids result in severe loss of activities.
PMCID: PMC231851  PMID: 9032253
3.  Cell cycle regulation of RNA polymerase III transcription. 
Molecular and Cellular Biology  1995;15(12):6653-6662.
Inactivation of the TATA-binding protein-containing complex TFIIIB contributes to the mitotic repression of RNA polymerase III transcription, both in frogs and in humans (J. M. Gottesfeld, V. J. Wolf, T. Dang, D. J. Forbes, and P. Hartl, Science 263:81-84, 1994; R. J. White, T. M. Gottlieb, C. S. Downes, and S. P. Jackson, Mol. Cell. Biol. 15:1983-1992, 1995). Using extracts of synchronized proliferating HeLa cells, we show that TFIIIB activity remains low during the early part of G1 phase and increases only gradually as cells approach S phase. As a result, the transcription of all class III genes tested is significantly less active in early G1 than it is in S or G2 phase, both in vitro and in vivo. The increased activity of TFIIIB as cells progress through interphase appears to be due to changes in the TATA-binding protein-associated components of this complex. The data suggest that TFIIIB is an important target for the cell cycle regulation of RNA polymerase III transcription during both mitosis and interphase of actively proliferating HeLa cells.
PMCID: PMC230918  PMID: 8524230
4.  Mitotic regulation of a TATA-binding-protein-containing complex. 
Molecular and Cellular Biology  1995;15(4):1983-1992.
The mitotic state is associated with a generalized repression of transcription. We show that mitotic repression of RNA polymerase III transcription can be reproduced by using extracts of synchronized HeLa cells. We have used this system to investigate the molecular basis of transcriptional repression during mitosis. We find a specific decrease in the activity of the TATA-binding-protein (TBP)-containing complex TFIIIB. TBP itself is hyperphosphorylated at mitosis, but this does not appear to account for the loss of TFIIIB activity. Instead, one or more TBP-associated components appear to be regulated. The data suggest that changes in the activity of TBP-associated components contribute to the coordinate repression of gene expression that occurs at mitosis.
PMCID: PMC230425  PMID: 7891693
5.  Nonmyristoylated Abl proteins transform a factor-dependent hematopoietic cell line. 
Molecular and Cellular Biology  1992;12(4):1864-1871.
N-terminal myristoylation can promote the association of proteins with the plasma membrane, a property that is required for oncogenic variants of Src and Abl to transform fibroblastic cell types. The P210bcr/abl protein of chronic myelogenous leukemia cells is not myristoylated and does not stably transform NIH 3T3 fibroblasts; however, it will transform lymphoid and myeloid cell types in vitro and in vivo, suggesting that myristoylation is not required for Abl variants to transform hematopoietic cells. To test this hypothesis, we introduced point mutations that disrupt myristoylation into two activated Abl proteins, v-Abl and a deletion mutant of c-Abl (delta XB), and examined their ability to transform an interleukin-3-dependent lymphoblastoid cell line, Ba/F3. Neither of the nonmyristoylated Abl proteins transformed NIH 3T3 fibroblasts, but like P210bcr/abl, both were capable of transforming the Ba/F3 cells to factor independence and tumorigenicity. Nonmyristoylated Abl variants did not associate with the plasma membrane in the transformed Ba/F3 cells. These results demonstrate that Abl proteins can transform hematopoietic cells in the absence of membrane association and suggest that distinct functions of Abl are required for transformation of fibroblast and hematopoietic cell types.
Images
PMCID: PMC369630  PMID: 1549131
6.  Point mutations in the abl SH2 domain coordinately impair phosphotyrosine binding in vitro and transforming activity in vivo. 
Molecular and Cellular Biology  1992;12(2):609-618.
We have constructed a series of point mutations in the highly conserved FLVRES motif of the src homology 2 (SH2) domain of the abl tyrosine kinase. Mutant SH2 domains were expressed in bacteria, and their ability to bind to tyrosine-phosphorylated proteins was examined in vitro. Three mutants were greatly reduced in their ability to bind both phosphotyrosine itself and tyrosine-phosphorylated cellular proteins. All of the mutants that retained activity bound to the same set of tyrosine-phosphorylated proteins as did the wild type, suggesting that binding specificity was unaffected. These results implicate the FLVRES motif in direct binding to phosphotyrosine. When the mutant SH2 domains were inserted into an activated abl kinase and expressed in murine fibroblasts, decreased in vitro phosphotyrosine binding correlated with decreased transforming ability. This finding implies that SH2-phosphotyrosine interactions are involved in transmission of positive growth signals by the nonreceptor tyrosine kinases, most likely via the assembly of multiprotein complexes with other tyrosine-phosphorylated proteins.
Images
PMCID: PMC364250  PMID: 1370711
7.  Developmental expression of Sp1 in the mouse. 
Molecular and Cellular Biology  1991;11(4):2189-2199.
The expression of the trans-acting transcription factor Sp1 in mice was defined by a combination of RNA analysis and immunohistochemical localization of the Sp1 protein. Although ubiquitously expressed, there was an unexpected difference of at least 100-fold in the amount of Sp1 message in different cell types. Sp1 protein levels showed corresponding marked differences. Substantial variations in Sp1 expression were also found in some cell types at different stages of development. Sp1 levels appeared to be highest in developing hematopoietic cells, fetal cells, and spermatids, suggesting that an elevated Sp1 level is associated with the differentiation process. These results indicate that Sp1 has a regulatory function in addition to its general role in the transcription of housekeeping genes.
Images
PMCID: PMC359911  PMID: 2005904
8.  Activation of phosphatidylinositol 3-kinase in cells expressing abl oncogene variants. 
Molecular and Cellular Biology  1991;11(2):1107-1113.
A phosphoinositide kinase specific for the D-3 position of the inositol ring, phosphatidylinositol (PI) 3-kinase, associates with activated receptors for platelet-derived growth factor, insulin, and colony-stimulating factor 1, with products of the oncogenes src, fms, yes, crk, and with polyomavirus middle T antigen. Efficient fibroblast transformation by proteins of the abl and src oncogene families requires activation of their protein-tyrosine kinase activity and membrane association via an amino-terminal myristoylation. We have demonstrated that the PI 3-kinase directly associates with autophosphorylated, activated protein-tyrosine kinase variants of the abl protein. In vivo, this association leads to accumulation of the highly phosphorylated products of PI 3-kinase, PI-3,4-bisphosphate and PI-3,4,5-trisphosphate, only in myristoylated, transforming abl protein variants. Myristoylation thus appears to be required to recruit PI 3-kinase activity to the plasma membrane for in vivo activation and correlates with the mitogenicity of the abl protein variants.
Images
PMCID: PMC359788  PMID: 1846663
9.  Cloning of the RNA8 gene of Saccharomyces cerevisiae, detection of the RNA8 protein, and demonstration that it is essential for nuclear pre-mRNA splicing. 
Molecular and Cellular Biology  1988;8(3):1067-1075.
Strains of Saccharomyces cerevisiae that bear the temperature-sensitive mutation rna8-1 are defective in nuclear pre-mRNA splicing at the restrictive temperature (36 degrees C), suggesting that the RNA8 gene encodes a component of the splicing machinery. The RNA8 gene was cloned by complementation of the temperature-sensitive growth defect of an rna8-1 mutant strain. Integrative transformation and gene disruption experiments confirmed the identity of the cloned DNA and demonstrated that the RNA8 gene encodes an essential function. The RNA8 gene was shown to be represented once per S. cerevisiae haploid genome and to encode a low-abundance transcript of approximately 7.4 kilobases. By using antisera raised against beta-galactosidase-RNA8 fusion proteins, the RNA8 gene product was identified in S. cerevisiae cell extracts as a low-abundance protein of approximately 260 kilodaltons. Immunodepletion of the RNA8 protein specifically abolished the activity of S. cerevisiae in vitro splicing extracts, confirming that RNA8 plays an essential role in splicing.
Images
PMCID: PMC363249  PMID: 2835658
10.  Protein-binding sites within the 5' DNase I-hypersensitive region of the chicken alpha D-globin gene. 
Molecular and Cellular Biology  1987;7(6):2059-2069.
We mapped at high resolution and as a function of development the hypersensitive domain in the 5'-flanking region of the chicken alpha D-globin gene and determined the specific protein-binding sites within the domain. The domain extends from -130 to +80 nucleotides (nt) relative to the cap site. DNase I footprinting within intact embryonic erythrocyte nuclei revealed a strongly protected area from -71 to -52 nt. The same area was weakly protected in adult nuclei. A factor was present in extracts of erythrocyte nuclei from both embryos and adults that protected the sequence AAGATAAGG (-63 to -55 nt) in DNase I footprinting experiments; at higher concentrations of extract, sequences immediately adjacent (-73 to -64 and -53 to -38) were also protected. The same pattern of binding was revealed by gel mobility shift assays. The identical AAGATAAGG sequence is found in the 5'-flanking region of the beta rho gene; it competed for binding of the alpha D-specific factor, suggesting that regulatory elements are shared.
Images
PMCID: PMC365326  PMID: 3600658

Results 1-10 (10)