PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None
Journals
Authors
Year of Publication
Document Types
1.  Cell cycle regulation of RNA polymerase III transcription. 
Molecular and Cellular Biology  1995;15(12):6653-6662.
Inactivation of the TATA-binding protein-containing complex TFIIIB contributes to the mitotic repression of RNA polymerase III transcription, both in frogs and in humans (J. M. Gottesfeld, V. J. Wolf, T. Dang, D. J. Forbes, and P. Hartl, Science 263:81-84, 1994; R. J. White, T. M. Gottlieb, C. S. Downes, and S. P. Jackson, Mol. Cell. Biol. 15:1983-1992, 1995). Using extracts of synchronized proliferating HeLa cells, we show that TFIIIB activity remains low during the early part of G1 phase and increases only gradually as cells approach S phase. As a result, the transcription of all class III genes tested is significantly less active in early G1 than it is in S or G2 phase, both in vitro and in vivo. The increased activity of TFIIIB as cells progress through interphase appears to be due to changes in the TATA-binding protein-associated components of this complex. The data suggest that TFIIIB is an important target for the cell cycle regulation of RNA polymerase III transcription during both mitosis and interphase of actively proliferating HeLa cells.
PMCID: PMC230918  PMID: 8524230
2.  Mitotic regulation of a TATA-binding-protein-containing complex. 
Molecular and Cellular Biology  1995;15(4):1983-1992.
The mitotic state is associated with a generalized repression of transcription. We show that mitotic repression of RNA polymerase III transcription can be reproduced by using extracts of synchronized HeLa cells. We have used this system to investigate the molecular basis of transcriptional repression during mitosis. We find a specific decrease in the activity of the TATA-binding-protein (TBP)-containing complex TFIIIB. TBP itself is hyperphosphorylated at mitosis, but this does not appear to account for the loss of TFIIIB activity. Instead, one or more TBP-associated components appear to be regulated. The data suggest that changes in the activity of TBP-associated components contribute to the coordinate repression of gene expression that occurs at mitosis.
PMCID: PMC230425  PMID: 7891693
3.  c-Jun is phosphorylated by the DNA-dependent protein kinase in vitro; definition of the minimal kinase recognition motif. 
Nucleic Acids Research  1993;21(5):1289-1295.
The DNA-dependent protein kinase (DNA-PK) phosphorylates a number of transcription factors. Here, we show that the DNA-PK modifies c-Jun in vitro and that serine residue 249 (Ser-249) is required for phosphorylation to occur. This residue corresponds to one of three sites of c-Jun that are phosphorylated in vivo and which negatively regulate c-Jun DNA binding in vitro. However, we find that phosphorylation of c-Jun by the DNA-PK does not interfere with DNA binding, indicating that phosphorylation at other sites is required for this effect. Mutagenesis of the phosphorylated region of c-Jun reveals that the primary amino acid sequence recognised by the DNA-PK consists of the sequence Ser-Gln, and that adjacent acidic residues potentiate kinase activity. Furthermore, when this site is placed within the context of a second protein, it confers DNA-PK directed phosphorylation upon that protein. Our findings will facilitate identification of DNA-PK phosphorylation sites in other transcription factors.
Images
PMCID: PMC309295  PMID: 8464713

Results 1-3 (3)