PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-8 (8)
 

Clipboard (0)
None
Journals
Year of Publication
Document Types
1.  CBX4-mediated SUMO modification regulates BMI1 recruitment at sites of DNA damage 
Nucleic Acids Research  2012;40(12):5497-5510.
Polycomb group (PcG) proteins are involved in epigenetic silencing where they function as major determinants of cell identity, stem cell pluripotency and the epigenetic gene silencing involved in cancer development. Recently numerous PcG proteins, including CBX4, have been shown to accumulate at sites of DNA damage. However, it remains unclear whether or not CBX4 or its E3 sumo ligase activity is directly involved in the DNA damage response (DDR). Here we define a novel role for CBX4 as an early DDR protein that mediates SUMO conjugation at sites of DNA lesions. DNA damage stimulates sumoylation of BMI1 by CBX4 at lysine 88, which is required for the accumulation of BMI1 at DNA damage sites. Moreover, we establish that CBX4 recruitment to the sites of laser micro-irradiation-induced DNA damage requires PARP activity but does not require H2AX, RNF8, BMI1 nor PI-3-related kinases. The importance of CBX4 in the DDR was confirmed by the depletion of CBX4, which resulted in decreased cellular resistance to ionizing radiation. Our results reveal a direct role for CBX4 in the DDR pathway.
doi:10.1093/nar/gks222
PMCID: PMC3384338  PMID: 22402492
2.  An optimized method for detecting gamma-H2AX in blood cells reveals a significant interindividual variation in the gamma-H2AX response among humans 
Nucleic Acids Research  2007;35(5):e36.
Phosphorylation of histone H2AX on serine 139 (gamma-H2AX, γH2AX) occurs at sites flanking DNA double-strand breaks (DSBs) and can provide a measure of the number of DSBs within a cell. Here we describe a rapid and simple flow-cytometry-based method, optimized to measure gamma-H2AX in non-fixed peripheral blood cells. No DSB induced signal was observed in H2AX−/− cells indicating that our FACS method specifically recognized gamma-H2AX accumulation. The gamma-H2AX assay was capable of detecting DNA damage at levels 100-fold below the detection limit of the alkaline comet assay. The gamma-H2AX signal was quantitative with a linear increase of the gamma-H2AX signal over two orders of magnitude. We found that all nucleated blood cell types examined, including the short-lived neutrophils induce gamma-H2AX in response to DSBs. Interindividual difference in the gamma-H2AX signal in response to ionizing radiation and the DSB-inducing drug calicheamicin was almost 2-fold in blood cells from patients, indicating that the amount of gamma-H2AX produced in response to a given dose of radiation varies significantly in the human population. This simple method could be used to monitor response to radiation or DNA-damaging drugs.
doi:10.1093/nar/gkl1169
PMCID: PMC1865071  PMID: 17284459
3.  Co-operation of BRCA1 and POH1 relieves the barriers posed by 53BP1 and RAP80 to resection 
Nucleic Acids Research  2013;41(22):10298-10311.
In G2 phase cells, DNA double-strand break repair switches from DNA non-homologous end-joining to homologous recombination. This switch demands the promotion of resection. We examine the changes in 53BP1 and RAP80 ionizing radiation induced foci (IRIF) in G2 phase, as these are factors that restrict resection. We observed a 2-fold increase in the volume of 53BP1 foci by 8 h, which is not seen in G1 cells. Additionally, an IRIF core devoid of 53BP1 arises where RPA foci form, with BRCA1 IRIF forming between 53BP1 and replication protein A (RPA). Ubiquitin chains assessed using α-FK2 antibodies are similarly repositioned. Repositioning of all these components requires BRCA1’s BRCT but not the ring finger domain. 53BP1, RAP80 and ubiquitin chains are enlarged following POH1 depletion by small interfering RNA, but a devoid core does not form and RPA foci formation is impaired. Co-depletion of POH1 and RAP80, BRCC36 or ABRAXAS allows establishment of the 53BP1 and ubiquitin chain-devoid core. Thus, the barriers posed by 53BP1 and RAP80 are relieved by BRCA1 and POH1, respectively. Analysis of combined depletions shows that these represent distinct but interfacing barriers to promote loss of ubiquitin chains in the IRIF core, which is required for subsequent resection. We propose a model whereby BRCA1 impacts on 53BP1 to allow access of POH1 to RAP80. POH1-dependent removal of RAP80 within the IRIF core enables degradation of ubiquitin chains, which promotes loss of 53BP1. Thus, POH1 represents a novel component regulating the switch from non-homologous end-joining to homologous recombination.
doi:10.1093/nar/gkt802
PMCID: PMC3905848  PMID: 24013561
4.  Opposing roles for 53BP1 during homologous recombination 
Nucleic Acids Research  2013;41(21):9719-9731.
Although DNA non-homologous end-joining repairs most DNA double-strand breaks (DSBs) in G2 phase, late repairing DSBs undergo resection and repair by homologous recombination (HR). Based on parallels to the situation in G1 cells, previous work has suggested that DSBs that undergo repair by HR predominantly localize to regions of heterochromatin (HC). By using H3K9me3 and H4K20me3 to identify HC regions, we substantiate and extend previous evidence, suggesting that HC-DSBs undergo repair by HR. Next, we examine roles for 53BP1 and BRCA1 in this process. Previous studies have shown that 53BP1 is pro-non-homologous end-joining and anti-HR. Surprisingly, we demonstrate that in G2 phase, 53BP1 is required for HR at HC-DSBs with its role being to promote phosphorylated KAP-1 foci formation. BRCA1, in contrast, is dispensable for pKAP-1 foci formation but relieves the barrier caused by 53BP1. As 53BP1 is retained at irradiation-induced foci during HR, we propose that BRCA1 promotes displacement but retention of 53BP1 to allow resection and any necessary HC modifications to complete HR. In contrast to this role for 53BP1 in HR in G2 phase, we show that it is dispensable for HR in S phase, where HC regions are likely relaxed during replication.
doi:10.1093/nar/gkt729
PMCID: PMC3834810  PMID: 23969417
5.  Targeting the DNA-binding activity of the human ERG transcription factor using new heterocyclic dithiophene diamidines 
Nucleic Acids Research  2012;41(1):125-138.
Direct modulation of gene expression by targeting oncogenic transcription factors is a new area of research for cancer treatment. ERG, an ETS-family transcription factor, is commonly over-expressed or translocated in leukaemia and prostate carcinoma. In this work, we selected the di-(thiophene-phenyl-amidine) compound DB1255 as an ERG/DNA binding inhibitor using a screening test of synthetic inhibitors of the ERG/DNA interaction followed by electrophoretic mobility shift assays (EMSA) validation. Spectrometry, footprint and biosensor-surface plasmon resonance analyses of the DB1255/DNA interaction evidenced sequence selectivity and groove binding as dimer. Additional EMSA evidenced the precise DNA-binding sequence required for optimal DB1255/DNA binding and thus for an efficient ERG/DNA complex inhibition. We further highlighted the structure activity relationships from comparison with derivatives. In cellulo luciferase assay confirmed this modulation both with the constructed optimal sequences and the Osteopontin promoter known to be regulated by ERG and which ERG-binding site was protected from DNaseI digestion on binding of DB1255. These data showed for the first time the ERG/DNA complex modulation, both in vitro and in cells, by a heterocyclic diamidine that specifically targets a portion of the ERG DNA recognition site.
doi:10.1093/nar/gks971
PMCID: PMC3592449  PMID: 23093599
6.  Phosphorylation of polynucleotide kinase/ phosphatase by DNA-dependent protein kinase and ataxia-telangiectasia mutated regulates its association with sites of DNA damage 
Nucleic Acids Research  2011;39(21):9224-9237.
Human polynucleotide kinase/phosphatase (PNKP) is a dual specificity 5′-DNA kinase/3′-DNA phosphatase, with roles in base excision repair, DNA single-strand break repair and non-homologous end joining (NHEJ); yet precisely how PNKP functions in the repair of DNA double strand breaks (DSBs) remains unclear. We demonstrate that PNKP is phosphorylated by the DNA-dependent protein kinase (DNA-PK) and ataxia-telangiectasia mutated (ATM) in vitro. The major phosphorylation site for both kinases was serine 114, with serine 126 being a minor site. Ionizing radiation (IR)-induced phosphorylation of cellular PNKP on S114 was ATM dependent, whereas phosphorylation of PNKP on S126 required both ATM and DNA-PK. Inactivation of DNA-PK and/or ATM led to reduced PNKP at DNA damage sites in vivo. Cells expressing PNKP with alanine or aspartic acid at serines 114 and 126 were modestly radiosensitive and IR enhanced the association of PNKP with XRCC4 and DNA ligase IV; however, this interaction was not affected by mutation of PNKP phosphorylation sites. Purified PNKP protein with mutation of serines 114 and 126 had decreased DNA kinase and DNA phosphatase activities and reduced affinity for DNA in vitro. Together, our results reveal that IR-induced phosphorylation of PNKP by ATM and DNA-PK regulates PNKP function at DSBs.
doi:10.1093/nar/gkr647
PMCID: PMC3241656  PMID: 21824916
7.  Induced topological changes in DNA complexes: influence of DNA sequences and small molecule structures 
Nucleic Acids Research  2011;39(10):4265-4274.
Heterocyclic diamidines are compounds with antiparasitic properties that target the minor groove of kinetoplast DNA. The mechanism of action of these compounds is unknown, but topological changes to DNA structures are likely to be involved. In this study, we have developed a polyacrylamide gel electrophoresis-based screening method to determine topological effects of heterocyclic diamidines on four minor groove target sequences: AAAAA, TTTAA, AAATT and ATATA. The AAAAA and AAATT sequences have the largest intrinsic bend, whereas the TTTAA and ATATA sequences are relatively straight. The changes caused by binding of the compounds are sequence dependent, but generally the topological effects on AAAAA and AAATT are similar as are the effects on TTTAA and ATATA. A total of 13 compounds with a variety of structural differences were evaluated for topological changes to DNA. All compounds decrease the mobility of the ATATA sequence that is consistent with decreased minor groove width and bending of the relatively straight DNA into the minor groove. Similar, but generally smaller, effects are seen with TTTAA. The intrinsically bent AAAAA and AAATT sequences, which have more narrow minor grooves, have smaller mobility changes on binding that are consistent with increased or decreased bending depending on compound structure.
doi:10.1093/nar/gkq1362
PMCID: PMC3105405  PMID: 21266485
8.  PhytAMP: a database dedicated to antimicrobial plant peptides 
Nucleic Acids Research  2008;37(Database issue):D963-D968.
Plants produce small cysteine-rich antimicrobial peptides as an innate defense against pathogens. Based on amino acid sequence homology, these peptides were classified mostly as α-defensins, thionins, lipid transfer proteins, cyclotides, snakins and hevein-like. Although many antimicrobial plant peptides are now well characterized, much information is still missing or is unavailable to potential users. The compilation of such information in one centralized resource, such as a database would therefore facilitate the study of the potential these peptide structures represent, for example, as alternatives in response to increasing antibiotic resistance or for increasing plant resistance to pathogens by genetic engineering. To achieve this goal, we developed a new database, PhytAMP, which contains valuable information on antimicrobial plant peptides, including taxonomic, microbiological and physicochemical data. Information is very easy to extract from this database and allows rapid prediction of structure/function relationships and target organisms and hence better exploitation of plant peptide biological activities in both the pharmaceutical and agricultural sectors. PhytAMP may be accessed free of charge at http://phytamp.pfba-lab.org.
doi:10.1093/nar/gkn655
PMCID: PMC2686510  PMID: 18836196

Results 1-8 (8)