PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-14 (14)
 

Clipboard (0)
None
Journals
more »
Authors
more »
Year of Publication
Document Types
1.  Exercise Induced Adipokine Changes and the Metabolic Syndrome 
Journal of Diabetes Research  2014;2014:726861.
The lack of adequate physical activity and obesity created a worldwide pandemic. Obesity is characterized by the deposition of adipose tissue in various parts of the body; it is now evident that adipose tissue also acts as an endocrine organ capable of secreting many cytokines that are though to be involved in the pathophysiology of obesity, insulin resistance, and metabolic syndrome. Adipokines, or adipose tissue-derived proteins, play a pivotal role in this scenario. Increased secretion of proinflammatory adipokines leads to a chronic inflammatory state that is accompanied by insulin resistance and glucose intolerance. Lifestyle change in terms of increased physical activity and exercise is the best nonpharmacological treatment for obesity since these can reduce insulin resistance, counteract the inflammatory state, and improve the lipid profile. There is growing evidence that exercise exerts its beneficial effects partly through alterations in the adipokine profile; that is, exercise increases secretion of anti-inflammatory adipokines and reduces proinflammatory cytokines. In this paper we briefly describe the pathophysiologic role of four important adipokines (adiponectin, leptin, TNF-α, and IL-6) in the metabolic syndrome and review some of the clinical trials that monitored these adipokines as a clinical outcome before and after exercise.
doi:10.1155/2014/726861
PMCID: PMC3915640  PMID: 24563869
2.  Short Term Exercise Induces PGC-1α, Ameliorates Inflammation and Increases Mitochondrial Membrane Proteins but Fails to Increase Respiratory Enzymes in Aging Diabetic Hearts 
PLoS ONE  2013;8(8):e70248.
PGC-1α, a transcriptional coactivator, controls inflammation and mitochondrial gene expression in insulin-sensitive tissues following exercise intervention. However, attributing such effects to PGC-1α is counfounded by exercise-induced fluctuations in blood glucose, insulin or bodyweight in diabetic patients. The goal of this study was to investigate the role of PGC-1α on inflammation and mitochondrial protein expressions in aging db/db mice hearts, independent of changes in glycemic parameters. In 8-month-old db/db mice hearts with diabetes lasting over 22 weeks, short-term, moderate-intensity exercise upregulated PGC-1α without altering body weight or glycemic parameters. Nonetheless, such a regimen lowered both cardiac (macrophage infiltration, iNOS and TNFα) and systemic (circulating chemokines and cytokines) inflammation. Curiously, such an anti-inflammatory effect was also linked to attenuated expression of downstream transcription factors of PGC-1α such as NRF-1 and several respiratory genes. Such mismatch between PGC-1α and its downstream targets was associated with elevated mitochondrial membrane proteins like Tom70 but a concurrent reduction in oxidative phosphorylation protein expressions in exercised db/db hearts. As mitochondrial oxidative stress was predominant in these hearts, in support of our in vivo data, increasing concentrations of H2O2 dose-dependently increased PGC-1α expression while inhibiting expression of inflammatory genes and downstream transcription factors in H9c2 cardiomyocytes in vitro. We conclude that short-term exercise-induced oxidative stress may be key in attenuating cardiac inflammatory genes and impairing PGC-1α mediated gene transcription of downstream transcription factors in type 2 diabetic hearts at an advanced age.
doi:10.1371/journal.pone.0070248
PMCID: PMC3731348  PMID: 23936397
3.  Exercise and the Aging Endothelium 
Journal of Diabetes Research  2013;2013:789607.
The endothelium plays a critical role in the maintenance of cardiovascular health by producing nitric oxide and other vasoactive materials. Aging is associated with a gradual decline in this functional aspect of endothelial regulation of cardiovascular homeostasis. Indeed, age is an independent risk factor for cardiovascular diseases and is in part an important factor in the increased exponential mortality rates from vascular disease such as myocardial infarction and stroke that occurs in the ageing population. There are a number of mechanisms suggested to explain age-related endothelial dysfunction. However, recent scientific studies have advanced the notion of oxidative stress and inflammation as the two major risk factors underlying aging and age-related diseases. Regular physical activity, known to have a favorable effect on cardiovascular health, can also improve the function of the ageing endothelium by modulating oxidative stress and inflammatory processes, as we discuss in this paper.
doi:10.1155/2013/789607
PMCID: PMC3747387  PMID: 23984434
4.  Emerging role of G protein-coupled receptors in microvascular myogenic tone 
Cardiovascular Research  2012;95(2):223-232.
Blood flow autoregulation results from the ability of resistance arteries to reduce or increase their diameters in response to changes in intravascular pressure. The mechanism by which arteries maintain a constant blood flow to organs over a range of pressures relies on this myogenic response, which defines the intrinsic property of the smooth muscle to contract in response to stretch. The resistance to flow created by myogenic tone (MT) prevents tissue damage and allows the maintenance of a constant perfusion, despite fluctuations in arterial pressure. Interventions targeting MT may provide a more rational therapeutic approach in vascular disorders, such as hypertension, vasospasm, chronic heart failure, or diabetes. Despite its early description by Bayliss in 1902, the cellular and molecular mechanisms underlying MT remain poorly understood. We now appreciate that MT requires a complex mechanotransduction converting a physical stimulus (pressure) into a biological response (change in vessel diameter). Although smooth muscle cell depolarization and a rise in intracellular calcium concentration are recognized as cornerstones of the myogenic response, the role of wall strain-induced formation of vasoactive mediators is less well established. The vascular system expresses a large variety of Class 1 G protein-coupled receptors (GPCR) activated by an eclectic range of chemical entities, including peptides, lipids, nucleotides, and amines. These messengers can function in blood vessels as vasoconstrictors. This review focuses on locally generated GPCR agonists and their proposed contributions to MT. Their interplay with pivotal Gq-11 and G12-13 protein signalling is also discussed.
doi:10.1093/cvr/cvs152
PMCID: PMC3888209  PMID: 22637750
Myogenic tone; G protein-coupled receptors; Gq-11; G12-13; Rho; TRP channels
5.  Potential Mechanisms of Exercise in Gestational Diabetes 
Gestational diabetes mellitus (GDM) is defined as glucose intolerance first diagnosed during pregnancy. This condition shares same array of underlying abnormalities as occurs in diabetes outside of pregnancy, for example, genetic and environmental causes. However, the role of a sedentary lifestyle and/or excess energy intake is more prominent in GDM. Physically active women are less likely to develop GDM and other pregnancy-related diseases. Weight gain in pregnancy causes increased release of adipokines from adipose tissue; many adipokines increase oxidative stress and insulin resistance. Increased intramyocellular lipids also increase cellular oxidative stress with subsequent generation of reactive oxygen species. A well-planned program of exercise is an important component of a healthy lifestyle and, in spite of old myths, is also recommended during pregnancy. This paper briefly reviews the role of adipokines in gestational diabetes and attempts to shed some light on the mechanisms by which exercise can be beneficial as an adjuvant therapy in GDM. In this regard, we discuss the mechanisms by which exercise increases insulin sensitivity, changes adipokine profile levels, and boosts antioxidant mechanisms.
doi:10.1155/2013/285948
PMCID: PMC3649306  PMID: 23691290
6.  Type II Diabetes Mellitus in Arabic-Speaking Countries 
The global epidemic of diabetes has not spared the Arabic-speaking countries, which have some of the highest prevalence of type II diabetes. This is particularly true of the Arab Gulf, a conglomerate of high income, oil-producing countries where prevalence rates are the highest. The prevalence rates among adults of the Arabic speaking countries as a whole range between 4%–21%, with the lowest being in Somalia and the highest in Kuwait. As economic growth has accelerated, so has the movement of the populations to urban centers where people are more likely to adopt lifestyles that embrace increased high-calorie food consumption and sedentary lifestyles. These factors likely contribute to the increased prevalence of obesity and diabetes in the Arabic speaking countries.
doi:10.1155/2012/902873
PMCID: PMC3407623  PMID: 22851968
7.  Exercise in the Metabolic Syndrome 
The metabolic syndrome is a clustering of obesity, diabetes, hyperlipidemia, and hypertension that is occurring in increasing frequency across the global population. Although there is some controversy about its diagnostic criteria, oxidative stress, which is defined as imbalance between the production and inactivation of reactive oxygen species, has a major pathophysiological role in all the components of this disease. Oxidative stress and consequent inflammation induce insulin resistance, which likely links the various components of this disease. We briefly review the role of oxidative stress as a major component of the metabolic syndrome and then discuss the impact of exercise on these pathophysiological pathways. Included in this paper is the effect of exercise in reducing fat-induced inflammation, blood pressure, and improving muscular metabolism.
doi:10.1155/2012/349710
PMCID: PMC3399489  PMID: 22829955
8.  Exercise and the Cardiovascular System 
There are alarming increases in the incidence of obesity, insulin resistance, type II diabetes, and cardiovascular disease. The risk of these diseases is significantly reduced by appropriate lifestyle modifications such as increased physical activity. However, the exact mechanisms by which exercise influences the development and progression of cardiovascular disease are unclear. In this paper we review some important exercise-induced changes in cardiac, vascular, and blood tissues and discuss recent clinical trials related to the benefits of exercise. We also discuss the roles of boosting antioxidant levels, consequences of epicardial fat reduction, increases in expression of heat shock proteins and endoplasmic reticulum stress proteins, mitochondrial adaptation, and the role of sarcolemmal and mitochondrial potassium channels in the contributing to the cardioprotection offered by exercise. In terms of vascular benefits, the main effects discussed are changes in exercise-induced vascular remodeling and endothelial function. Exercise-induced fibrinolytic and rheological changes also underlie the hematological benefits of exercise.
doi:10.1155/2012/210852
PMCID: PMC3371347  PMID: 22701195
9.  Obesity in Arabic-Speaking Countries 
Journal of Obesity  2011;2011:686430.
Obesity has reached epidemic proportions throughout the globe, and this has also impacted people of the Arabic-speaking countries, especially those in higher-income, oil-producing countries. The prevalence of obesity in children and adolescents ranges from 5% to 14% in males and from 3% to 18% in females. There is a significant increase in the incidence of obesity with a prevalence of 2%–55% in adult females and 1%–30% in adult males. Changes in food consumption, socioeconomic and demographic factors, physical activity, and multiple pregnancies may be important factors that contribute to the increased prevalence of obesity engulfing the Arabic-speaking countries.
doi:10.1155/2011/686430
PMCID: PMC3228340  PMID: 22175002
10.  Diabetes and Alpha Lipoic Acid 
Diabetes mellitus is a multi-faceted metabolic disorder where there is increased oxidative stress that contributes to the pathogenesis of this debilitating disease. This has prompted several investigations into the use of antioxidants as a complementary therapeutic approach. Alpha lipoic acid, a naturally occurring dithiol compound which plays an essential role in mitochondrial bioenergetic reactions, has gained considerable attention as an antioxidant for use in managing diabetic complications. Lipoic acid quenches reactive oxygen species, chelates metal ions, and reduces the oxidized forms of other antioxidants such as vitamin C, vitamin E, and glutathione. It also boosts antioxidant defense system through Nrf-2-mediated antioxidant gene expression and by modulation of peroxisome proliferator activated receptors-regulated genes. ALA inhibits nuclear factor kappa B and activates AMPK in skeletal muscles, which in turn have a plethora of metabolic consequences. These diverse actions suggest that lipoic acid acts by multiple mechanisms, many of which have only been uncovered recently. In this review we briefly summarize the known biochemical properties of lipoic acid and then discussed the oxidative mechanisms implicated in diabetic complications and the mechanisms by which lipoic acid may ameliorate these reactions. The findings of some of the clinical trials in which lipoic acid administration has been tested in diabetic patients during the last 10 years are summarized. It appears that the clearest benefit of lipoic acid supplementation is in patients with diabetic neuropathy.
doi:10.3389/fphar.2011.00069
PMCID: PMC3221300  PMID: 22125537
diabetes; alpha lipoic acid; neuropathy; nephropathy; antioxidant; oxidative stress
11.  Antioxidant and Anti-Inflammatory Effects of Exercise in Diabetic Patients 
Experimental Diabetes Research  2011;2012:941868.
Diabetes is a chronic metabolic disease which is characterized by absolute or relative deficiencies in insulin secretion and/or insulin action. The key roles of oxidative stress and inflammation in the progression of vascular complications of this disease are well recognized. Accumulating epidemiologic evidence confirms that physical inactivity is an independent risk factor for insulin resistance and type II diabetes. This paper briefly reviews the pathophysiological pathways associated with oxidative stress and inflammation in diabetes mellitus and then discusses the impact of exercise on these systems. In this regard, we discuss exercise induced activation of cellular antioxidant systems through “nuclear factor erythroid 2-related factor.” We also discuss anti-inflammatory myokines, which are produced and released by contracting muscle fibers. Antiapoptotic, anti-inflammatory and chaperon effects of exercise-induced heat shock proteins are also reviewed.
doi:10.1155/2012/941868
PMCID: PMC3191828  PMID: 22007193
12.  Molecular Mechanisms in Exercise-Induced Cardioprotection 
Physical inactivity is increasingly recognized as modifiable behavioral risk factor for cardiovascular diseases. A partial list of proposed mechanisms for exercise-induced cardioprotection include induction of heat shock proteins, increase in cardiac antioxidant capacity, expression of endoplasmic reticulum stress proteins, anatomical and physiological changes in the coronary arteries, changes in nitric oxide production, adaptational changes in cardiac mitochondria, increased autophagy, and improved function of sarcolemmal and/or mitochondrial ATP-sensitive potassium channels. It is currently unclear which of these protective mechanisms are essential for exercise-induced cardioprotection. However, most investigations focus on sarcolemmal KATP channels, NO production, and mitochondrial changes although it is very likely that other mechanisms may also exist. This paper discusses current information about these aforementioned topics and does not consider potentially important adaptations within blood or the autonomic nervous system. A better understanding of the molecular basis of exercise-induced cardioprotection will help to develop better therapeutic strategies.
doi:10.4061/2011/972807
PMCID: PMC3051318  PMID: 21403846
13.  Bladder Dysfunction in Diabetes Mellitus 
Diabetic cystopathy is a well-recognized complication of diabetes mellitus, which usually develops in middle-aged or elderly patients with long-standing and poorly controlled disease. It may have broad spectrum clinical presentations. Patients may be asymptomatic, or have a wide variety of voiding complaints from overactive bladder and urge incontinence to decreased bladder sensation and overflow incontinence. This review focuses on pathophysiological mechanisms responsible for urologic complications of diabetes and emphasizing on recent developments in our understanding of this condition. We also tried to shed some light on therapeutic modalities like behavioral, pharmacological, and surgical approaches.
doi:10.3389/fphar.2010.00136
PMCID: PMC3153010  PMID: 21833175
diabetes; neurogenic bladder; cystopathy; incontinence
14.  Effect of Moderate-Intensity Exercise on Plasma C-Reactive Protein and Aortic Endothelial Function in Type 2 Diabetic Mice 
Mediators of Inflammation  2010;2010:149678.
The aim of this study was to evaluate the effects of moderate-intensity exercise on plasma levels of C-reactive protein (CRP) and tumor necrosis factor-alpha (TNF-α) as markers of low-grade inflammation and endothelial function in diabetic (db/db) mice. Control and db/db mice were divided into sedentary and exercised groups. Aortic endothelial function was evaluated after two- and six-week exercises using a wire myograph. Plasma CRP levels were measured at baseline, and after two and six weeks of exercise. Baseline plasma CRP levels were significantly higher in db/db mice compared to control (P < .05). After two weeks of exercise, aortic endothelial function was significantly improved without affecting body weight or plasma CRP levels. Six weeks of exercise not only improved endothelial function, but also significantly reduced body weight and plasma CRP levels in db/db mice. Thus short-term exercise has beneficial effect on endothelial function without reducing low-grade inflammation while more prolonged exercise periods are required to reduce inflammatory markers.
doi:10.1155/2010/149678
PMCID: PMC2929502  PMID: 20847810

Results 1-14 (14)