PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-10 (10)
 

Clipboard (0)
None
Journals
Year of Publication
1.  An Oxygenase-Independent Cholesterol Catabolic Pathway Operates under Oxic Conditions 
PLoS ONE  2013;8(6):e66675.
Cholesterol is one of the most ubiquitous compounds in nature. The 9,10-seco-pathway for the aerobic degradation of cholesterol was established thirty years ago. This pathway is characterized by the extensive use of oxygen and oxygenases for substrate activation and ring fission. The classical pathway was the only catabolic pathway adopted by all studies on cholesterol-degrading bacteria. Sterolibacterium denitrificans can degrade cholesterol regardless of the presence of oxygen. Here, we aerobically grew the model organism with 13C-labeled cholesterol, and substrate consumption and intermediate production were monitored over time. Based on the detected 13C-labeled intermediates, this study proposes an alternative cholesterol catabolic pathway. This alternative pathway differs from the classical 9,10-seco-pathway in numerous important aspects. First, substrate activation proceeds through anaerobic C-25 hydroxylation and subsequent isomerization to form 26-hydroxycholest-4-en-3-one. Second, after the side chain degradation, the resulting androgen intermediate is activated by adding water to the C-1/C-2 double bond. Third, the cleavage of the core ring structure starts at the A-ring via a hydrolytic mechanism. The 18O-incorporation experiments confirmed that water is the sole oxygen donor in this catabolic pathway.
doi:10.1371/journal.pone.0066675
PMCID: PMC3691188  PMID: 23826110
2.  Laboratory evolution of Geobacter sulfurreducens for enhanced growth on lactate via a single-base-pair substitution in a transcriptional regulator 
The ISME Journal  2011;6(5):975-983.
The addition of organic compounds to groundwater in order to promote bioremediation may represent a new selective pressure on subsurface microorganisms. The ability of Geobacter sulfurreducens, which serves as a model for the Geobacter species that are important in various types of anaerobic groundwater bioremediation, to adapt for rapid metabolism of lactate, a common bioremediation amendment, was evaluated. Serial transfer of five parallel cultures in a medium with lactate as the sole electron donor yielded five strains that could metabolize lactate faster than the wild-type strain. Genome sequencing revealed that all five strains had non-synonymous single-nucleotide polymorphisms in the same gene, GSU0514, a putative transcriptional regulator. Introducing the single-base-pair mutation from one of the five strains into the wild-type strain conferred rapid growth on lactate. This strain and the five adaptively evolved strains had four to eight-fold higher transcript abundance than wild-type cells for genes for the two subunits of succinyl-CoA synthase, an enzyme required for growth on lactate. DNA-binding assays demonstrated that the protein encoded by GSU0514 bound to the putative promoter of the succinyl-CoA synthase operon. The binding sequence was not apparent elsewhere in the genome. These results demonstrate that a single-base-pair mutation in a transcriptional regulator can have a significant impact on the capacity for substrate utilization and suggest that adaptive evolution should be considered as a potential response of microorganisms to environmental change(s) imposed during bioremediation.
doi:10.1038/ismej.2011.166
PMCID: PMC3329115  PMID: 22113376
evolution; genome sequencing; geobacter; subsurface
3.  Epoxy Coenzyme A Thioester Pathways for Degradation of Aromatic Compounds 
Applied and Environmental Microbiology  2012;78(15):5043-5051.
Aromatic compounds (biogenic and anthropogenic) are abundant in the biosphere. Some of them are well-known environmental pollutants. Although the aromatic nucleus is relatively recalcitrant, microorganisms have developed various catabolic routes that enable complete biodegradation of aromatic compounds. The adopted degradation pathways depend on the availability of oxygen. Under oxic conditions, microorganisms utilize oxygen as a cosubstrate to activate and cleave the aromatic ring. In contrast, under anoxic conditions, the aromatic compounds are transformed to coenzyme A (CoA) thioesters followed by energy-consuming reduction of the ring. Eventually, the dearomatized ring is opened via a hydrolytic mechanism. Recently, novel catabolic pathways for the aerobic degradation of aromatic compounds were elucidated that differ significantly from the established catabolic routes. The new pathways were investigated in detail for the aerobic bacterial degradation of benzoate and phenylacetate. In both cases, the pathway is initiated by transforming the substrate to a CoA thioester and all the intermediates are bound by CoA. The subsequent reactions involve epoxidation of the aromatic ring followed by hydrolytic ring cleavage. Here we discuss the novel pathways, with a particular focus on their unique features and occurrence as well as ecological significance.
doi:10.1128/AEM.00633-12
PMCID: PMC3416408  PMID: 22582071
4.  A Novel Testosterone Catabolic Pathway in Bacteria ▿ ‡  
Journal of Bacteriology  2011;193(17):4447-4455.
Forty years ago, Coulter and Talalay (A. W. Coulter and P. Talalay, J. Biol. Chem. 243:3238–3247, 1968) established the oxygenase-dependent pathway for the degradation of testosterone by aerobes. The oxic testosterone catabolic pathway involves several oxygen-dependent reactions and is not available for anaerobes. Since then, a variety of anaerobic bacteria have been described for the ability to degrade testosterone in the absence of oxygen. Here, a novel, oxygenase-independent testosterone catabolic pathway in such organisms is described. Steroidobacter denitrificansDSMZ18526 was shown to be capable of degrading testosterone in the absence of oxygen and was selected as the model organism in this study. In a previous investigation, we identified the initial intermediates involved in an anoxic testosterone catabolic pathway, most of which are identical to those of the oxic pathway demonstrated in Comamonas testosteroni. In this study, five additional intermediates of the anoxic pathway were identified. We demonstrated that subsequent steps of the anoxic pathway greatly differ from those of the established oxic pathway, which suggests that a novel pathway for testosterone catabolism is present. In the proposed anoxic pathway, a reduction reaction occurs at C-4 and C-5 of androsta-1,4-diene-3,17-dione, the last common intermediate of both the oxic and anoxic pathways. After that, a novel hydration reaction occurs and a hydroxyl group is thus introduced to the C-1α position of C19steroid substrates. To our knowledge, an enzymatic hydration reaction occurring at the A ring of steroid compounds has not been reported before.
doi:10.1128/JB.00331-11
PMCID: PMC3165539  PMID: 21725000
5.  Multiple Papillomatosis of Breast and Patient's Choice of Treatment 
Papillary lesions of breast represent a range of lesions. Intraductal papilloma and its association with nipple discharge are well known. However, multiple papillomatosis has quite distinct characteristics and decision making can be somewhat challenging. We report a case of multiple papillomatosis in association with ductal carcinoma in situ (DCIS). Patient opted for ipsilateral mastectomy and prophylactic mastectomy of contralateral breast. Her decision of having prophylactic mastectomy was vindicated by presence of incidental DCIS in the contralateral breast. To our knowledge, this is the first reported case of multiple papillomatosis with DCIS of breast, along with incidental synchronous papillomatosis of contralateral breast with DCIS. The case illustrates few distinct features of multiple papillomatosis of breast and exemplifies how a patient's choice is so paramount in decision making process. Patients should be fully informed of the treatment options of the condition, and their wishes should be fully taken into account while making the final decision.
doi:10.4061/2010/540590
PMCID: PMC3014705  PMID: 21234412
6.  Genome-scale comparison and constraint-based metabolic reconstruction of the facultative anaerobic Fe(III)-reducer Rhodoferax ferrireducens 
BMC Genomics  2009;10:447.
Background
Rhodoferax ferrireducens is a metabolically versatile, Fe(III)-reducing, subsurface microorganism that is likely to play an important role in the carbon and metal cycles in the subsurface. It also has the unique ability to convert sugars to electricity, oxidizing the sugars to carbon dioxide with quantitative electron transfer to graphite electrodes in microbial fuel cells. In order to expand our limited knowledge about R. ferrireducens, the complete genome sequence of this organism was further annotated and then the physiology of R. ferrireducens was investigated with a constraint-based, genome-scale in silico metabolic model and laboratory studies.
Results
The iterative modeling and experimental approach unveiled exciting, previously unknown physiological features, including an expanded range of substrates that support growth, such as cellobiose and citrate, and provided additional insights into important features such as the stoichiometry of the electron transport chain and the ability to grow via fumarate dismutation. Further analysis explained why R. ferrireducens is unable to grow via photosynthesis or fermentation of sugars like other members of this genus and uncovered novel genes for benzoate metabolism. The genome also revealed that R. ferrireducens is well-adapted for growth in the subsurface because it appears to be capable of dealing with a number of environmental insults, including heavy metals, aromatic compounds, nutrient limitation and oxidative stress.
Conclusion
This study demonstrates that combining genome-scale modeling with the annotation of a new genome sequence can guide experimental studies and accelerate the understanding of the physiology of under-studied yet environmentally relevant microorganisms.
doi:10.1186/1471-2164-10-447
PMCID: PMC2755013  PMID: 19772637
7.  Cholest-4-En-3-One-Δ1-Dehydrogenase, a Flavoprotein Catalyzing the Second Step in Anoxic Cholesterol Metabolism▿  
The anoxic metabolism of cholesterol was studied in the denitrifying bacterium Sterolibacterium denitrificans, which was grown with cholesterol and nitrate. Cholest-4-en-3-one was identified before as the product of cholesterol dehydrogenase/isomerase, the first enzyme of the pathway. The postulated second enzyme, cholest-4-en-3-one-Δ1-dehydrogenase, was partially purified, and its N-terminal amino acid sequence and tryptic peptide sequences were determined. Based on this information, the corresponding gene was amplified and cloned and the His-tagged recombinant protein was overproduced, purified, and characterized. The recombinant enzyme catalyzes the expected Δ1-desaturation (cholest-4-en-3-one to cholesta-1,4-dien-3-one) under anoxic conditions. It contains approximately one molecule of FAD per 62-kDa subunit and forms high molecular aggregates in the absence of detergents. The enzyme accepts various artificial electron acceptors, including dichlorophenol indophenol and methylene blue. It oxidizes not only cholest-4-en-3-one, but also progesterone (with highest catalytic efficiency, androst-4-en-3,17-dione, testosterone, 19-nortestosterone, and cholest-5-en-3-one. Two steroids, corticosterone and estrone, act as competitive inhibitors. The dehydrogenase resembles 3-ketosteroid-Δ1-dehydrogenases from other organisms (highest amino acid sequence identity with that from Pseudoalteromonas haloplanktis), with some interesting differences. Due to its catalytic properties, the enzyme may be useful in steroid transformations.
doi:10.1128/AEM.01968-07
PMCID: PMC2223216  PMID: 17993555
8.  Study of Anoxic and Oxic Cholesterol Metabolism by Sterolibacterium denitrificans▿  
Journal of Bacteriology  2007;190(3):905-914.
The initial enzymes and genes involved in the anoxic metabolism of cholesterol were studied in the denitrifying bacterium Sterolibacterium denitrificans Chol-1ST. The second enzyme of the proposed pathway, cholest-4-en-3-one-Δ1-dehydrogenase (AcmB), was partially purified. Based on amino acid sequence analysis, a gene probe was derived to screen a cosmid library of chromosomal DNA for the acmB gene. A positive clone comprising a 43-kbp DNA insert was sequenced. In addition to the acmB gene, the DNA fragment harbored the acmA gene, which encodes the first enzyme of the pathway, cholesterol dehydrogenase/isomerase. The acmA gene was overexpressed, and the recombinant dehydrogenase/isomerase was purified. This enzyme catalyzes the predicted transformation of cholesterol to cholest-4-en-3-one. S. denitrificans cells grown aerobically with cholesterol exhibited the same pattern of soluble proteins and cell extracts formed the same 14C-labeled products from [14C]cholesterol as cells that were grown under anoxic, denitrifying conditions. This is especially remarkable for the late products that are formed by anaerobic hydroxylation of the cholesterol side chain with water as the oxygen donor. Hence, this facultative anaerobic bacterium may use the anoxic pathway lacking any oxygenase-dependent reaction also under oxic conditions. This confers metabolic flexibility to such facultative anaerobic bacteria.
doi:10.1128/JB.01525-07
PMCID: PMC2223586  PMID: 18039763
9.  Aerobic Benzoyl-Coenzyme A (CoA) Catabolic Pathway in Azoarcus evansii: Conversion of Ring Cleavage Product by 3,4-Dehydroadipyl-CoA Semialdehyde Dehydrogenase 
Journal of Bacteriology  2006;188(8):2919-2927.
Benzoate, a strategic intermediate in aerobic aromatic metabolism, is metabolized in various bacteria via an unorthodox pathway. The intermediates of this pathway are coenzyme A (CoA) thioesters throughout, and ring cleavage is nonoxygenolytic. The fate of the ring cleavage product 3,4-dehydroadipyl-CoA semialdehyde was studied in the β-proteobacterium Azoarcus evansii. Cell extracts contained a benzoate-induced, NADP+-specific aldehyde dehydrogenase, which oxidized this intermediate. A postulated putative long-chain aldehyde dehydrogenase gene, which might encode this new enzyme, is located on a cluster of genes encoding enzymes and a transport system required for aerobic benzoate oxidation. The gene was expressed in Escherichia coli, and the maltose-binding protein-tagged enzyme was purified and studied. It is a homodimer composed of 54 kDa (without tag) subunits and was confirmed to be the desired 3,4-dehydroadipyl-CoA semialdehyde dehydrogenase. The reaction product was identified by nuclear magnetic resonance spectroscopy as the corresponding acid 3,4-dehydroadipyl-CoA. Hence, the intermediates of aerobic benzoyl-CoA catabolic pathway recognized so far are benzoyl-CoA; 2,3-dihydro-2,3-dihydroxybenzoyl-CoA; 3,4-dehydroadipyl-CoA semialdehyde plus formate; and 3,4-dehydroadipyl-CoA. The further metabolism is thought to lead to 3-oxoadipyl-CoA, the intermediate at which the conventional and the unorthodox pathways merge.
doi:10.1128/JB.188.8.2919-2927.2006
PMCID: PMC1446997  PMID: 16585753

Results 1-10 (10)