PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
author:("Imai, makoo")
1.  Chronic Electrical Stimulation of the Carotid Sinus Baroreflex Improves LV Function and Promotes Reversal of Ventricular Remodeling in Dogs with Advanced Heart Failure 
Circulation. Heart failure  2010;4(1):65-70.
Background
Autonomic abnormalities exist in heart failure (HF) and contribute to disease progression. Activation of the Carotid sinus baroreflex (CSB) has been shown to reduce sympathetic outflow and augment parasympathetic vagal tone. This study tested the hypothesis that long-term electrical activation of carotid sinus baroreflex improves left ventricular (LV) function and attenuates progressive LV remodeling in dogs with advanced chronic HF.
Methods and Results
Studies were performed in 14 dogs with coronary microembolization-induced HF (LV ejection fraction, EF ~25%). Eight dogs were chronically instrumented for bilateral CSB activation using the Rheos® System (CVRx® Inc., Minneapolis, MN) and 6 were not and served as controls. All dogs were followed for 3 months and none received other background therapy. During follow-up, treatment with CSB increased LV EF 4.0 ± 2.4 % compared to a reduction in control dogs of −2.8 ± 1.0% (p<0.05). Similarly, treatment with CSB decreased LV end-systolic volume −2.5 ± 2.7 ml compared to an increase in control dogs of 6.7 ± 2.9 ml (p<0.05). Compared to control, CSB activation significantly decreased LV end-diastolic pressure and circulating plasma norepinephrine, normalized expression of cardiac β1-adrenergic receptors, β-adrenergic receptor kinase and nitric oxide synthase and reduced interstitial fibrosis and cardiomyocyte hypertrophy.
Conclusions
In dogs with advanced HF, CSB activation improves global LV function and partially reverses LV remodeling both globally and at cellular and molecular levels.
doi:10.1161/CIRCHEARTFAILURE.110.955013
PMCID: PMC3048958  PMID: 21097604
heart failure; ventricular remodeling; gene expression; baroreflex function
2.  A before and after comparison of the effects of forest walking on the sleep of a community-based sample of people with sleep complaints 
Background
Sleep disturbance is a major health issue in Japan. This before-after study aimed to evaluate the immediate effects of forest walking in a community-based population with sleep complaints.
Methods
Participants were 71 healthy volunteers (43 men and 28 women). Two-hour forest-walking sessions were conducted on 8 different weekend days from September through December 2005. Sleep conditions were compared between the nights before and after walking in a forest by self-administered questionnaire and actigraphy data.
Results
Two hours of forest walking improved sleep characteristics; impacting actual sleep time, immobile minutes, self-rated depth of sleep, and sleep quality. Mean actual sleep time estimated by actigraphy on the night after forest walking was 419.8 ± 128.7 (S.D.) minutes whereas that the night before was 365.9 ± 89.4 minutes (n = 42). Forest walking in the afternoon improved actual sleep time and immobile minutes compared with forest walking in the forenoon. Mean actual sleep times did not increase after forenoon walks (n = 26) (the night before and after forenoon walks, 380.0 ± 99.6 and 385.6 ± 101.7 minutes, respectively), whereas afternoon walks (n = 16) increased mean actual sleep times from 342.9 ± 66.2 to 475.4 ± 150.5 minutes. The trend of mean immobile minutes was similar to the abovementioned trend of mean actual sleep times.
Conclusions
Forest walking improved nocturnal sleep conditions for individuals with sleep complaints, possibly as a result of exercise and emotional improvement. Furthermore, extension of sleep duration was greater after an afternoon walk compared to a forenoon walk. Further study of a forest-walking program in a randomized controlled trial is warranted to clarify its effect on people with insomnia.
doi:10.1186/1751-0759-5-13
PMCID: PMC3216244  PMID: 21999605
forest walking (Shinrin-yoku); actual sleep time; actigraphy; St. Mary's Hospital Sleep Questionnaire; circadian phase
3.  Cyclosporine A Attenuates Mitochondrial Permeability Transition and Improves Mitochondrial Respiratory Function in Cardiomyocytes Isolated from Dogs With Heart Failure 
Objective
We used isolated cardiomyocytes to investigate a possible role of mitochondrial permeability transition pore in mitochondrial abnormalities associated with heart failure.
Methods
Cardiomyocytes were isolated from LV myocardium of normal control dogs and dogs with heart failure produced by intracoronary microembolizations. Mitochondrial permeability transition was measured in isolated cardiomyocytes with intact sarcolemma with and without 0.2 μM Cyclosporin A using calcein AM and the fluorometer. State-3 mitochondrial respiration was also measured with the Clark electrode. Mitochondrial membrane potential was measured with JC-1 probe using the fluorometer. Propidium iodide was used to ensure sarcolemma integrity.
Results
200 minutes after loading with calcein AM, mitochondria of failing cardiomyocytes showed only 50% of maximal level of calcein fluorescence while it remained unchanged in normal cells. The mitochondrial membrane potential in failing cardiomyocytes was significantly decreased by 38% compared to normal cardiomyocytes. Cyclosporine A significantly slowed the exit of calcein from mitochondria of failing cardiomyocytes and increased mitochondrial membrane potential by 29%. State-3 respiration was not affected with Cyclosporine A in normal cardiomyocytes while it was significantly increased in failing cardiomyocytes by 20%.
Conclusions
Exit of calcein (m.w. 1.0 kDa) from mitochondria of viable failing cardiomyocytes with intact sarcolemma suggests an existence of a reversible transitory permeability transition opening in high conductance mode. Attenuation of calcein exit, ΔΨm and improvement of state-3 respiration achieved with CsA (0.2 μM) show that permeability transition opening could be a cause of mitochondrial dysfunction described in the failing heart.
doi:10.1016/j.yjmcc.2006.09.013
PMCID: PMC2700715  PMID: 17070837
Permeability transition; Heart failure; Mitochondria
4.  Left Atrial Reverse Remodeling in Dogs with Moderate and Advanced Heart Failure Treated with A Passive Mechanical Containment Device: An Echocardiographic Study 
Journal of cardiac failure  2007;13(4):312-317.
Background
Assessment of global LV remodeling is important in evaluating the efficacy of pharmacologic and device therapies for the treatment of chronic heart failure (HF). The effects of pharmacologic or device therapies on global left atrial (LA) remodeling in HF, while also important, are not often examined. We showed that long-term therapy with the Acorn Cardiac Support Device (CSD), a passive mechanical ventricular containment device, prevents and/or reverses LV remodeling in dogs with HF. This study examined the effects of the CSD on global LA remodeling in dogs with moderate and advanced HF.
Methods and Results
Studies were performed in 24 dogs with coronary microembolization-induced HF. Of these, 12 had moderate HF (ejection fraction, EF 30% to 40%) and 12 advanced HF (EF ≤25%). In each group, the CSD was implanted in 6 dogs and the other 6 served as controls. Dogs were followed for 3 months in the moderate group and 6 months in the advanced HF group. LA maximal volume (LAVmax), LA volume at the onset of the p-wave (LAVp), LA minimal volume (LAVmin), LA active emptying volume (LAAEV) and LA active emptying fraction (LAAEF) were measured from 2-dimensional echocardiograms obtained prior to CSD implantation and at the end of the treatment period. Treatment effect (Δ) comparisons between CSD-treated dogs and controls showed that CSD therapy significantly decreased LA volumes (ΔLAVmax: 3.33 ± 0.70 vs. −2.87±1.31 ml, p=0.002; 7.77 ± 1.76 vs. −0.37 ± 0.87 ml, p=0.002) and improved LA function (ΔLAAEF: −6.00 ± 1.53 vs. 1.85 ± 1.32 %, p=0.003; −2.39 ± 1.10 vs. 3.13 ± 1.66 %, p=0.02) in the moderate HF and advanced HF groups respectively.
Conclusions
Progressive LA enlargement and LA functional deterioration occurs in untreated dogs with HF. Monotherapy with the CSD prevents LA enlargement and improves LA mechanical function in dogs with moderate and advanced HF indicating prevention and/or reversal of adverse LA remodeling.
doi:10.1016/j.cardfail.2007.01.006
PMCID: PMC1939806  PMID: 17517352
Atrium; Echocardiography; Heart failure; Heart-assist device

Results 1-4 (4)