PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-7 (7)
 

Clipboard (0)
None
Journals
Year of Publication
Document Types
author:("Ikeno, fuji")
1.  Thioredoxin 1 Overexpression Extends Mainly the Earlier Part of Life Span in Mice 
We examined the effects of increased levels of thioredoxin 1 (Trx1) on resistance to oxidative stress and aging in transgenic mice overexpressing Trx1 [Tg(TRX1)+/0]. The Tg(TRX1)+/0 mice showed significantly higher Trx1 protein levels in all the tissues examined compared with the wild-type littermates. Oxidative damage to proteins and levels of lipid peroxidation were significantly lower in the livers of Tg(TRX1)+/0 mice compared with wild-type littermates. The survival study demonstrated that male Tg(TRX1)+/0 mice significantly extended the earlier part of life span compared with wild-type littermates, but no significant life extension was observed in females. Neither male nor female Tg(TRX1)+/0 mice showed changes in maximum life span. Our findings suggested that the increased levels of Trx1 in the Tg(TRX1)+/0 mice were correlated to increased resistance to oxidative stress, which could be beneficial in the earlier part of life span but not the maximum life span in the C57BL/6 mice.
doi:10.1093/gerona/glr125
PMCID: PMC3210956  PMID: 21873593
Thioredoxin; Transgenic mouse; Oxidative stress; Protein carbonylation; Aging
2.  Reduction of glucose intolerance with high fat feeding is associated with anti-inflammatory effects of thioredoxin 1 overexpression in mice 
Pathobiology of Aging & Age Related Diseases  2012;2:10.3402/pba.v2i0.17101.
Aging is associated with reduced ability to maintain normal glucose homeostasis. It has been suggested that an age-associated increase in chronic pro-inflammatory state could drive this reduction in glucoregulatory function. Thioredoxins (Trx) are oxido-reductase enzymes that play an important role in the regulation of oxidative stress and inflammation. In this study, we tested whether overexpression of Trx1 in mice [Tg(TRX1)+/0] could protect from glucose metabolism dysfunction caused by high fat diet feeding. Body weight and fat mass gains with high fat feeding were similar in Tg(TRX1)+/0 and wild-type mice; however, high fat diet induced glucose intolerance was reduced in Tg(TRX1)+/0 mice relative to wild-type mice. In addition, expression of the pro-inflammatory cytokine TNF-α was reduced in adipose tissue of Tg(TRX1)+/0 mice compared to wild-type mice. These findings suggest that activation of thioredoxins may be a potential therapeutic target for maintenance of glucose metabolism with obesity or aging.
doi:10.3402/pba.v2i0.17101
PMCID: PMC3417639  PMID: 22953037
oxidative stress; diabetes; obesity; glucose homeostasis; aging
3.  Does Reduced IGF-1R Signaling in Igf1r+/− Mice Alter Aging? 
PLoS ONE  2011;6(11):e26891.
Mutations in insulin/IGF-1 signaling pathway have been shown to lead to increased longevity in various invertebrate models. Therefore, the effect of the haplo- insufficiency of the IGF-1 receptor (Igf1r+/−) on longevity/aging was evaluated in C57Bl/6 mice using rigorous criteria where lifespan and end-of-life pathology were measured under optimal husbandry conditions using large sample sizes. Igf1r+/− mice exhibited reductions in IGF-1 receptor levels and the activation of Akt by IGF-1, with no compensatory increases in serum IGF-1 or tissue IGF-1 mRNA levels, indicating that the Igf1r+/− mice show reduced IGF-1 signaling. Aged male, but not female Igf1r+/− mice were glucose intolerant, and both genders developed insulin resistance as they aged. Female, but not male Igf1r+/− mice survived longer than wild type mice after lethal paraquat and diquat exposure, and female Igf1r+/− mice also exhibited less diquat-induced liver damage. However, no significant difference between the lifespans of the male Igf1r+/− and wild type mice was observed; and the mean lifespan of the Igf1r+/− females was increased only slightly (less than 5%) compared to wild type mice. A comprehensive pathological analysis showed no significant difference in end-of-life pathological lesions between the Igf1r+/− and wild type mice. These data show that the Igf1r+/− mouse is not a model of increased longevity and delayed aging as predicted by invertebrate models with mutations in the insulin/IGF-1 signaling pathway.
doi:10.1371/journal.pone.0026891
PMCID: PMC3223158  PMID: 22132081
4.  Mice Deficient in Both Mn Superoxide Dismutase and Glutathione Peroxidase-1 Have Increased Oxidative Damage and a Greater Incidence of Pathology but No Reduction in Longevity 
To test the impact of increased mitochondrial oxidative stress as a mechanism underlying aging and age-related pathologies, we generated mice with a combined deficiency in two mitochondrial-localized antioxidant enzymes, Mn superoxide dismutase (MnSOD) and glutathione peroxidase-1 (Gpx-1). We compared life span, pathology, and oxidative damage in Gpx1−/−, Sod2+/−Gpx1+/−, Sod2+/−Gpx1−/−, and wild-type control mice. Oxidative damage was elevated in Sod2+/−Gpx1−/− mice, as shown by increased DNA oxidation in liver and skeletal muscle and increased protein oxidation in brain. Surprisingly, Sod2+/−Gpx1−/− mice showed no reduction in life span, despite increased levels of oxidative damage. Consistent with the important role for oxidative stress in tumorigenesis during aging, the incidence of neoplasms was significantly increased in the older Sod2+/−Gpx1−/− mice (28–30 months). Thus, these data do not support a significant role for increased oxidative stress as a result of compromised mitochondrial antioxidant defenses in modulating life span in mice and do not support the oxidative stress theory of aging.
doi:10.1093/gerona/glp132
PMCID: PMC2781787  PMID: 19776219
Oxidative stress; Longevity
5.  Overexpression of Mn Superoxide Dismutase Does Not Increase Life Span in Mice 
Genetic manipulations of Mn superoxide dismutase (MnSOD), SOD2 expression have demonstrated that altering the level of MnSOD activity is critical for cellular function and life span in invertebrates. In mammals, Sod2 homozygous knockout mice die shortly after birth, and alterations of MnSOD levels are correlated with changes in oxidative damage and in the generation of mitochondrial reactive oxygen species. In this study, we directly tested the effects of overexpressing MnSOD in young (4–6 months) and old (26–28 months) mice on mitochondrial function, levels of oxidative damage or stress, life span, and end-of-life pathology. Our data show that an approximately twofold overexpression of MnSOD throughout life in mice resulted in decreased lipid peroxidation, increased resistance against paraquat-induced oxidative stress, and decreased age-related decline in mitochondrial ATP production. However, this change in MnSOD expression did not alter either life span or age-related pathology.
doi:10.1093/gerona/glp100
PMCID: PMC2759571  PMID: 19633237
Oxidative damage; Mn superoxide dismutase; Pathology; Aging
6.  Is the Oxidative Stress Theory of Aging Dead? 
Biochimica et biophysica acta  2009;1790(10):1005-1014.
Currently, the Oxidative Stress (or Free Radical) Theory of Aging is the most popular explanation of how aging occurs at the molecular level. While data from studies in invertebrates (e.g., C. elegans and Drosophila) and rodents show a correlation between increased lifespan and resistance to oxidative stress (and in some cases reduced oxidative damage to macromolecules), direct evidence showing that alterations in oxidative damage/stress play a role in aging are limited to a few studies with transgenic Drosophila that overexpress antioxidant enzymes. Over the past eight years, our laboratory has conducted an exhaustive study on the effect of under- or overexpressing a large number and wide variety of genes coding for antioxidant enzymes. In this review, we present the survival data from these studies together. Because only one (the deletion of the Sod1 gene) of the 18 genetic manipulations we studied had an effect on lifespan, our data calls into serious question the hypothesis that alterations in oxidative damage/stress play a role in the longevity of mice.
doi:10.1016/j.bbagen.2009.06.003
PMCID: PMC2789432  PMID: 19524016
Antioxidant defense; oxidative stress; oxidative damage; knockout mice; transgenic mice; longevity
7.  Caspase-2 Deficiency Enhances Aging-Related Traits in Mice 
Alteration of apoptotic activity has been observed in a number of tissues in aging mammals, but it remains unclear whether and/or how apoptosis may affect aging. Caspase-2 is a member of the cysteine protease family that plays a critical role in apoptosis. To understand the impact of compromised apoptosis function on mammalian aging, we conducted a comparative study on caspase-2 deficient mice and their wild-type littermates with a specific focus on the aging-related traits at advanced ages. We found that caspase-2 deficiency enhanced a number of traits commonly seen in premature aging animals. Loss of caspase-2 was associated with shortened maximum lifespan, impaired hair growth, increased bone loss, and reduced body fat content. In addition, we found that the livers of caspase-2 deficient mice had higher levels of oxidized proteins than those of age-matched wild-type mice, suggesting that caspase-2 deficiency compromised the animal's ability to clear oxidatively damaged cells. Collectively, these results suggest that caspase-2 deficiency affects aging in the mice. This study thus demonstrates for the first time that disruption of a key apoptotic gene has a significant impact on aging.
doi:10.1016/j.mad.2006.11.030
PMCID: PMC1828128  PMID: 17188333
caspase-2; maximum lifespan; bone; hair growth; fat

Results 1-7 (7)