PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
1.  The nucleotide-binding site of Aquifex aeolicus LpxC 
The structure of UDP-3-O-acyl-N-acetylglucosamine deacetylase (LpxC) in complex with UDP is reported. The complex allows for a description of how the enzyme recognizes and binds a nucleotide moiety and enables the construction of an LpxC-substrate model.
The structure of recombinant Aquifex aeolicus UDP-3-O-acyl-N-acetylglucosamine deacetylase (LpxC) in complex with UDP has been determined to a resolution of 2.2 Å. Previous studies have characterized the binding sites of the fatty-acid and sugar moieties of the substrate, UDP-(3-O-hydroxymyristoyl)-N-­acetylglucosamine, but not that of the nucleotide. The uracil-binding site is constructed from amino acids that are highly conserved across species. Hydrophobic associations with the Phe155 and Arg250 side chains in combination with hydrogen-bonding interactions with the main chain of Glu154 and the side chains of Tyr151 and Lys227 position the base. The phosphate and ribose groups are directed away from the active site and interact with Arg137, Lys156, Glu186 and Arg250. The orientation of the phosphate-ribose tail is not conducive to catalysis, perhaps owing to the position of an inhibitory Zn2+. However, based on the position of uracil revealed in this study and on the previously reported complex of LpxC with an inhibitor, a model is proposed for substrate binding.
doi:10.1107/S1744309106041893
PMCID: PMC2225228  PMID: 17077484
lipid A; Aquifex aeolicus; LpxC
2.  Trypanosoma brucei UDP-galactose-4′-epimerase in ternary complex with NAD+ and the substrate analogue UDP-4-deoxy-4-fluoro-α-d-galactose 
The structure of recombinant T. brucei UDP-galactose-4′-epimerase cocrystallized with NAD+ and the substrate analogue UDP-4-deoxy-4-fluoro-α-d-galactose has been determined at medium resolution. Comparisons with structures of human and E. coli UDP-galactose-4′-epimerase–ligand complexes reveal that the hexose moieties are able to adopt different orientations in the active site.
The structure of the NAD-dependent oxidoreductase UDP-galactose-4′-epimerase from Trypanosoma brucei in complex with cofactor and the substrate analogue UDP-4-deoxy-4-fluoro-α-d-galactose has been determined using diffraction data to 2.7 Å resolution. Despite the high level of sequence and structure conservation between the trypanosomatid enzyme and those from humans, yeast and bacteria, the binding of the 4-fluoro-α-d-galactose moiety is distinct from previously reported structures. Of particular note is the observation that when bound to the T. brucei enzyme, the galactose moiety of this fluoro-derivative is rotated approximately 180° with respect to the orientation of the hexose component of UDP-glucose when in complex with the human enzyme. The architecture of the catalytic centre is designed to effectively bind different orientations of the hexose, a finding that is consistent with a mechanism that requires the sugar to maintain a degree of flexibility within the active site.
doi:10.1107/S1744309106028740
PMCID: PMC2242870  PMID: 16946458
short-chain dehydrogenase/reductases; Trypanosoma brucei; UDP-galactose-4′-epimerase; UDP-4-deoxy-4-fluoro-α-d-galactose
3.  High-resolution complex of papain with remnants of a cysteine protease inhibitor derived from Trypanosoma brucei  
Attempts to crystallize a complex of papain (C. papaya) with a cysteine protease inhibitor from the parasitic pathogen T. brucei failed. However, over an extended period the mixture produced an ordered crystal of the protease carrying two peptide fragments in the active site. These correspond to dipeptides and tripeptides that are assigned as fragments of the inhibitor, which has presumably suffered proteolytic cleavage.
Attempts to cocrystallize the cysteine protease papain derived from the latex of Carica papaya with an inhibitor of cysteine proteases (ICP) from Trypanosoma brucei were unsuccessful. However, crystals of papain that diffracted to higher resolution, 1.5 Å, than other crystals of this archetypal cysteine protease were obtained, so the analysis was continued. Surprisingly, the substrate-binding cleft was occupied by two short peptide fragments which have been assigned as remnants of ICP. Comparisons reveal that these peptides bind in the active site in a manner similar to that of the human cysteine protease inhibitor stefin B when it is complexed to papain. The assignment of the fragment sequences is consistent with the specificity of the protease.
doi:10.1107/S1744309106014849
PMCID: PMC2243108  PMID: 16754967
papain; cysteine protease; inhibitors; Trypanosoma brucei
4.  Structure and reactivity of Trypanosoma brucei pteridine reductase: inhibition by the archetypal antifolate methotrexate 
Molecular Microbiology  2006;61(6):1457-1468.
The protozoan Trypanosoma brucei has a functional pteridine reductase (TbPTR1), an NADPH-dependent short-chain reductase that participates in the salvage of pterins, which are essential for parasite growth. PTR1 displays broad-spectrum activity with pterins and folates, provides a metabolic bypass for inhibition of the trypanosomatid dihydrofolate reductase and therefore compromises the use of antifolates for treatment of trypanosomiasis. Catalytic properties of recombinant TbPTR1 and inhibition by the archetypal antifolate methotrexate have been characterized and the crystal structure of the ternary complex with cofactor NADP+ and the inhibitor determined at 2.2 Å resolution. This enzyme shares 50% amino acid sequence identity with Leishmania major PTR1 (LmPTR1) and comparisons show that the architecture of the cofactor binding site, and the catalytic centre are highly conserved, as are most interactions with the inhibitor. However, specific amino acid differences, in particular the placement of Trp221 at the side of the active site, and adjustment of the β6-α6 loop and α6 helix at one side of the substrate-binding cleft significantly reduce the size of the substrate binding site of TbPTR1 and alter the chemical properties compared with LmPTR1. A reactive Cys168, within the active site cleft, in conjunction with the C-terminus carboxyl group and His267 of a partner subunit forms a triad similar to the catalytic component of cysteine proteases. TbPTR1 therefore offers novel structural features to exploit in the search for inhibitors of therapeutic value against African trypanosomiasis.
doi:10.1111/j.1365-2958.2006.05332.x
PMCID: PMC1618733  PMID: 16968221

Results 1-4 (4)