PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
1.  Structure of Staphylococcus aureus 1,4-dihydroxy-2-naphthoyl-CoA synthase (MenB) in complex with acetoacetyl-CoA 
The structure of S. aureus MenB, an enzyme in the biosynthetic pathway to vitamin K2, has been determined and compared with the enzyme derived from another important pathogen, M. tuberculosis.
Vitamin K2, or menaquinone, is an essential cofactor for many organisms and the enzymes involved in its biosynthesis are potential antimicrobial drug targets. One of these enzymes, 1,4-dihydroxy-2-naphthoyl-CoA synthase (MenB) from the pathogen Staphylococcus aureus, has been obtained in recombinant form and its quaternary structure has been analyzed in solution. Cubic crystals of the enzyme allowed a low-resolution structure (2.9 Å) to be determined. The asymmetric unit consists of two subunits and a crystallographic threefold axis of symmetry generates a hexamer consistent with size-exclusion chromatography. Analytical ultracentrifugation indicates the presence of six states in solution, monomeric through to hexameric, with the dimer noted as being particularly stable. MenB displays the crotonase-family fold with distinct N- and C-terminal domains and a flexible segment of structure around the active site. The smaller C-terminal domain plays an important role in oligomerization and also in substrate binding. The presence of acetoacetyl-CoA in one of the two active sites present in the asymmetric unit indicates how part of the substrate binds and facilitates comparisons with the structure of Mycobacterium tuberculosis MenB.
doi:10.1107/S1744309107047720
PMCID: PMC2339762  PMID: 18007038
crotonase; synthase; vitamin biosynthesis; menaquinone; MenB
2.  Characterization of the Mycobacterium tuberculosis 4-Diphosphocytidyl-2-C-Methyl-d-Erythritol Synthase: Potential for Drug Development▿  
Journal of Bacteriology  2007;189(24):8922-8927.
Mycobacterium tuberculosis utilizes the methylerythritol phosphate (MEP) pathway for biosynthesis of isopentenyl diphosphate and its isomer, dimethylallyl diphosphate, precursors of all isoprenoid compounds. This pathway is of interest as a source of new drug targets, as it is absent from humans and disruption of the responsible genes has shown a lethal phenotype for Escherichia coli. In the MEP pathway, 4-diphosphocytidyl-2-C-methyl-d-erythritol is formed from 2-C-methyl-d-erythritol 4-phosphate (MEP) and CTP in a reaction catalyzed by a 4-diphosphocytidyl-2-C-methyl-d-erythritol synthase (IspD). In the present work, we demonstrate that Rv3582c is essential for M. tuberculosis: Rv3582c has been cloned and expressed, and the encoded protein has been purified. The purified M. tuberculosis IspD protein was capable of catalyzing the formation of 4-diphosphocytidyl-2-C-methyl-d-erythritol in the presence of MEP and CTP. The enzyme was active over a broad pH range (pH 6.0 to 9.0), with peak activity at pH 8.0. The activity was absolutely dependent upon divalent cations, with 20 mM Mg2+ being optimal, and replacement of CTP with other nucleotide 5′-triphosphates did not support activity. Under the conditions tested, M. tuberculosis IspD had Km values of 58.5 μM for MEP and 53.2 μM for CTP. Calculated kcat and kcat/Km values were 0.72 min−1 and 12.3 mM−1 min−1 for MEP and 1.0 min−1 and 18.8 mM−1 min−1 for CTP, respectively.
doi:10.1128/JB.00925-07
PMCID: PMC2168624  PMID: 17921290
3.  The structure of Mycobacteria 2C-methyl-D-erythritol-2,4-cyclodiphosphate synthase, an essential enzyme, provides a platform for drug discovery 
Background
The prevalence of tuberculosis, the prolonged and expensive treatment that this disease requires and an increase in drug resistance indicate an urgent need for new treatments. The 1-deoxy-D-xylulose 5-phosphate pathway of isoprenoid precursor biosynthesis is an attractive chemotherapeutic target because it occurs in many pathogens, including Mycobacterium tuberculosis, and is absent from humans. To underpin future drug development it is important to assess which enzymes in this biosynthetic pathway are essential in the actual pathogens and to characterize them.
Results
The fifth enzyme of this pathway, encoded by ispF, is 2C-methyl-D-erythritol-2,4-cyclodiphosphate synthase (IspF). A two-step recombination strategy was used to construct ispF deletion mutants in M. tuberculosis but only wild-type double crossover strains were isolated. The chromosomal copy could be deleted when a second functional copy was provided on an integrating plasmid, demonstrating that ispF is an essential gene under the conditions tested thereby confirming its potential as a drug target. We attempted structure determination of the M. tuberculosis enzyme (MtIspF), but failed to obtain crystals. We instead analyzed the orthologue M. smegmatis IspF (MsIspF), sharing 73% amino acid sequence identity, at 2.2 Å resolution. The high level of sequence conservation is particularly pronounced in and around the active site. MsIspF is a trimer with a hydrophobic cavity at its center that contains density consistent with diphosphate-containing isoprenoids. The active site, created by two subunits, comprises a rigid CDP-Zn2+ binding pocket with a flexible loop to position the 2C-methyl-D-erythritol moiety of substrate. Sequence-structure comparisons indicate that the active site and interactions with ligands are highly conserved.
Conclusion
Our study genetically validates MtIspF as a therapeutic target and provides a model system for structure-based ligand design.
doi:10.1186/1472-6807-7-68
PMCID: PMC2151065  PMID: 17956607
4.  Structure, substrate recognition and reactivity of Leishmania major mevalonate kinase 
Background
Isoprenoid precursor synthesis via the mevalonate route in humans and pathogenic trypanosomatids is an important metabolic pathway. There is however, only limited information available on the structure and reactivity of the component enzymes in trypanosomatids. Since isoprenoid biosynthesis is essential for trypanosomatid viability and may provide new targets for therapeutic intervention it is important to characterize the pathway components.
Results
Putative mevalonate kinase encoding genes from Leishmania major (LmMK) and Trypanosoma brucei (TbMK) have been cloned, over-expressed in and proteins isolated from procyclic-form T. brucei. A highly sensitive radioactive assay was developed and shows ATP-dependent phosphorylation of mevalonate. Apo and (R)-mevalonate bound crystal structures of LmMK, from a bacterial expression system, have been determined to high resolution providing, for the first time, information concerning binding of mevalonate to an MK. The mevalonate binds in a deep cavity lined by highly conserved residues. His25 is key for binding and for discrimination of (R)- over (S)-mevalonate, with the main chain amide interacting with the C3 hydroxyl group of (R)-mevalonate, and the side chain contributing, together with Val202 and Thr283, to the construction of a hydrophobic binding site for the C3 methyl substituent. The C5 hydroxyl, where phosphorylation occurs, points towards catalytic residues, Lys18 and Asp155. The activity of LmMK was significantly reduced compared to MK from other species and we were unable to obtain ATP-binding data. Comparisons with the rat MK:ATP complex were used to investigate how this substrate might bind. In LmMK, helix α2 and the preceding polypeptide adopt a conformation, not seen in related kinase structures, impeding access to the nucleotide triphosphate binding site suggesting that a conformational rearrangement is required to allow ATP binding.
Conclusion
Our new structural information, consistent with data on homologous enzymes allows a detailed description of how mevalonate is recognized and positioned for catalysis in MK. The mevalonate-binding site is highly conserved yet the ATP-binding site is structurally distinct in LmMK. We are unable to provide a definitive explanation for the low activity of recombinant protein isolated from a bacterial expression system compared to material isolated from procyclic-form Trypanosoma brucei.
doi:10.1186/1472-6807-7-20
PMCID: PMC1851959  PMID: 17397541

Results 1-4 (4)