PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None
Journals
Year of Publication
Document Types
1.  IDENTIFICATION OF GENETIC VARIANTS USING BARCODED MULTIPLEXED SEQUENCING 
Nature methods  2008;5(10):887-893.
We developed a generalized framework for multiplexed resequencing of targeted regions of the human genome on the Illumina Genome Analyzer using degenerate indexed DNA sequence barcodes ligated to fragmented DNA prior to sequencing. Using this method, the DNA of multiple HapMap individuals was simultaneously sequenced at several ENCODE (ENCyclopedia of DNA Elements) regions. We then evaluated the use of Bayes factors for discovering and genotyping polymorphisms from aligned sequenced reads. If we required that predicted polymorphisms be either previously identified by dbSNP or be visually evident upon reinspection of archived ENCODE traces, we observed a false-positive rate of 11.3% using strict thresholds (Ks>1,000) for predicting variants and 69.6% for lax thresholds (Ks>10). Conversely, false-negative rates ranged from 10.8% to 90.8%, with those at stricter cut-offs occurring at lower coverage (< 10 aligned reads). These results suggest that >90% of genetic variants are discoverable using multiplexed sequencing provided sufficient coverage at the polymorphic base.
doi:10.1038/nmeth.1251
PMCID: PMC3171277  PMID: 18794863
2.  Common sequence variants on 20q11.22 confer melanoma susceptibility 
Nature genetics  2008;40(7):838-840.
We conducted a genome-wide association pooling study for cutaneous melanoma and performed validation in samples totalling 2019 cases and 2105 controls. Using pooling we identified a novel melanoma risk locus on chromosome 20 (rs910873, rs1885120), with replication in two further samples (combined P <1 × 10-15). The odds ratio is 1.75 (1.53, 2.01), with evidence for stronger association in early onset cases.
doi:10.1038/ng.163
PMCID: PMC2755512  PMID: 18488026
3.  Multimarker analysis and imputation of multiple platform pooling-based genome-wide association studies 
Bioinformatics  2008;24(17):1896-1902.
Summary: For many genome-wide association (GWA) studies individually genotyping one million or more SNPs provides a marginal increase in coverage at a substantial cost. Much of the information gained is redundant due to the correlation structure inherent in the human genome. Pooling-based GWA studies could benefit significantly by utilizing this redundancy to reduce noise, improve the accuracy of the observations and increase genomic coverage. We introduce a measure of correlation between individual genotyping and pooling, under the same framework that r2 provides a measure of linkage disequilibrium (LD) between pairs of SNPs. We then report a new non-haplotype multimarker multi-loci method that leverages the correlation structure between SNPs in the human genome to increase the efficacy of pooling-based GWA studies. We first give a theoretical framework and derivation of our multimarker method. Next, we evaluate simulations using this multimarker approach in comparison to single marker analysis. Finally, we experimentally evaluate our method using different pools of HapMap individuals on the Illumina 450S Duo, Illumina 550K and Affymetrix 5.0 platforms for a combined total of 1 333 631 SNPs. Our results show that use of multimarker analysis reduces noise specific to pooling-based studies, allows for efficient integration of multiple microarray platforms and provides more accurate measures of significance than single marker analysis. Additionally, this approach can be extended to allow for imputing the association significance for SNPs not directly observed using neighboring SNPs in LD. This multimarker method can now be used to cost-effectively complete pooling-based GWA studies with multiple platforms across over one million SNPs and to impute neighboring SNPs weighted for the loss of information due to pooling.
Contact: dcraig@tgen.org
Supplementary information: Supplementary data are available at Bioinformatics online.
doi:10.1093/bioinformatics/btn333
PMCID: PMC2732219  PMID: 18617537
4.  Resolving Individuals Contributing Trace Amounts of DNA to Highly Complex Mixtures Using High-Density SNP Genotyping Microarrays 
PLoS Genetics  2008;4(8):e1000167.
We use high-density single nucleotide polymorphism (SNP) genotyping microarrays to demonstrate the ability to accurately and robustly determine whether individuals are in a complex genomic DNA mixture. We first develop a theoretical framework for detecting an individual's presence within a mixture, then show, through simulations, the limits associated with our method, and finally demonstrate experimentally the identification of the presence of genomic DNA of specific individuals within a series of highly complex genomic mixtures, including mixtures where an individual contributes less than 0.1% of the total genomic DNA. These findings shift the perceived utility of SNPs for identifying individual trace contributors within a forensics mixture, and suggest future research efforts into assessing the viability of previously sub-optimal DNA sources due to sample contamination. These findings also suggest that composite statistics across cohorts, such as allele frequency or genotype counts, do not mask identity within genome-wide association studies. The implications of these findings are discussed.
Author Summary
In this report we describe a framework for accurately and robustly resolving whether individuals are in a complex genomic DNA mixture using high-density single nucleotide polymorphism (SNP) genotyping microarrays. We develop a theoretical framework for detecting an individual's presence within a mixture, show its limits through simulation, and finally demonstrate experimentally the identification of the presence of genomic DNA of individuals within a series of highly complex genomic mixtures. Our approaches demonstrate straightforward identification of trace amounts (<1%) of DNA from an individual contributor within a complex mixture. We show how probe-intensity analysis of high-density SNP data can be used, even given the experimental noise of a microarray. We discuss the implications of these findings in two fields: forensics and genome-wide association (GWA) genetic studies. Within forensics, resolving whether an individual is contributing trace amounts of genomic DNA to a complex mixture is a tremendous challenge. Within GWA studies, there is a considerable push to make experimental data publicly available so that the data can be combined with other studies. Our findings show that such an approach does not completely conceal identity, since it is straightforward to assess the probability that a person or relative participated in a GWA study.
doi:10.1371/journal.pgen.1000167
PMCID: PMC2516199  PMID: 18769715

Results 1-4 (4)