PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None
Journals
Authors
Year of Publication
Document Types
1.  Improved variant discovery through local re-alignment of short-read next-generation sequencing data using SRMA 
Genome Biology  2010;11(10):R99.
A primary component of next-generation sequencing analysis is to align short reads to a reference genome, with each read aligned independently. However, reads that observe the same non-reference DNA sequence are highly correlated and can be used to better model the true variation in the target genome. A novel short-read micro re-aligner, SRMA, that leverages this correlation to better resolve a consensus of the underlying DNA sequence of the targeted genome is described here.
doi:10.1186/gb-2010-11-10-r99
PMCID: PMC3218665  PMID: 20932289
2.  Local alignment of generalized k-base encoded DNA sequence 
BMC Bioinformatics  2010;11:347.
Background
DNA sequence comparison is a well-studied problem, in which two DNA sequences are compared using a weighted edit distance. Recent DNA sequencing technologies however observe an encoded form of the sequence, rather than each DNA base individually. The encoded DNA sequence may contain technical errors, and therefore encoded sequencing errors must be incorporated when comparing an encoded DNA sequence to a reference DNA sequence.
Results
Although two-base encoding is currently used in practice, many other encoding schemes are possible, whereby two ore more bases are encoded at a time. A generalized k-base encoding scheme is presented, whereby feasible higher order encodings are better able to differentiate errors in the encoded sequence from true DNA sequence variants. A generalized version of the previous two-base encoding DNA sequence comparison algorithm is used to compare a k-base encoded sequence to a DNA reference sequence. Finally, simulations are performed to evaluate the power, the false positive and false negative SNP discovery rates, and the performance time of k-base encoding compared to previous methods as well as to the standard DNA sequence comparison algorithm.
Conclusions
The novel generalized k-base encoding scheme and resulting local alignment algorithm permits the development of higher fidelity ligation-based next generation sequencing technology. This bioinformatic solution affords greater robustness to errors, as well as lower false SNP discovery rates, only at the cost of computational time.
doi:10.1186/1471-2105-11-347
PMCID: PMC2911458  PMID: 20576157
3.  Improving the efficiency of genomic loci capture using oligonucleotide arrays for high throughput resequencing 
BMC Genomics  2009;10:646.
Background
The emergence of next-generation sequencing technology presents tremendous opportunities to accelerate the discovery of rare variants or mutations that underlie human genetic disorders. Although the complete sequencing of the affected individuals' genomes would be the most powerful approach to finding such variants, the cost of such efforts make it impractical for routine use in disease gene research. In cases where candidate genes or loci can be defined by linkage, association, or phenotypic studies, the practical sequencing target can be made much smaller than the whole genome, and it becomes critical to have capture methods that can be used to purify the desired portion of the genome for shotgun short-read sequencing without biasing allelic representation or coverage. One major approach is array-based capture which relies on the ability to create a custom in-situ synthesized oligonucleotide microarray for use as a collection of hybridization capture probes. This approach is being used by our group and others routinely and we are continuing to improve its performance.
Results
Here, we provide a complete protocol optimized for large aggregate sequence intervals and demonstrate its utility with the capture of all predicted amino acid coding sequence from 3,038 human genes using 241,700 60-mer oligonucleotides. Further, we demonstrate two techniques by which the efficiency of the capture can be increased: by introducing a step to block cross hybridization mediated by common adapter sequences used in sequencing library construction, and by repeating the hybridization capture step. These improvements can boost the targeting efficiency to the point where over 85% of the mapped sequence reads fall within 100 bases of the targeted regions.
Conclusions
The complete protocol introduced in this paper enables researchers to perform practical capture experiments, and includes two novel methods for increasing the targeting efficiency. Coupled with the new massively parallel sequencing technologies, this provides a powerful approach to identifying disease-causing genetic variants that can be localized within the genome by traditional methods.
doi:10.1186/1471-2164-10-646
PMCID: PMC2808330  PMID: 20043857
4.  Local alignment of two-base encoded DNA sequence 
BMC Bioinformatics  2009;10:175.
Background
DNA sequence comparison is based on optimal local alignment of two sequences using a similarity score. However, some new DNA sequencing technologies do not directly measure the base sequence, but rather an encoded form, such as the two-base encoding considered here. In order to compare such data to a reference sequence, the data must be decoded into sequence. The decoding is deterministic, but the possibility of measurement errors requires searching among all possible error modes and resulting alignments to achieve an optimal balance of fewer errors versus greater sequence similarity.
Results
We present an extension of the standard dynamic programming method for local alignment, which simultaneously decodes the data and performs the alignment, maximizing a similarity score based on a weighted combination of errors and edits, and allowing an affine gap penalty. We also present simulations that demonstrate the performance characteristics of our two base encoded alignment method and contrast those with standard DNA sequence alignment under the same conditions.
Conclusion
The new local alignment algorithm for two-base encoded data has substantial power to properly detect and correct measurement errors while identifying underlying sequence variants, and facilitating genome re-sequencing efforts based on this form of sequence data.
doi:10.1186/1471-2105-10-175
PMCID: PMC2709925  PMID: 19508732

Results 1-4 (4)