PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
1.  Development of a New Method for Monitoring Prostate-Specific Antigen Changes in Men with Localised Prostate Cancer: A Comparison of Observational Cohorts 
European urology  2009;57(3):446-452.
Background
Prostate-specific antigen (PSA) measurements are increasingly used to monitor men with localised prostate cancer (PCa), but there is little consensus about the method to use.
Objective
To apply age-specific predictions of PSA level (developed in men without cancer) to one cohort of men with clinically identified PCa and one cohort of men with PSA-detected PCa. We hypothesise that among men with clinically identified cancer, the annual increase in PSA level would be steeper than in men with PSA-detected cancer.
Design, setting, and participants
The Scandinavian Prostatic Cancer Group 4 (SPCG-4) cohort consisted of 321 men assigned to the watchful waiting arm of the SPCG-4 trial. The UK cohort consisted of 320 men with PSA-detected PCa in the Prostate Testing for Cancer and Treatment (ProtecT) study in nine UK centres between 1999 and 2007 who opted for monitoring rather than treatment. Multilevel models describing changes in PSA level were fitted to the two cohorts, and average PSA level at age 50, change in PSA level with age, and predicted PSA values were derived.
Measurements
PSA level.
Results and limitations
In the SPCG-4 cohort, mean PSA at age 50 was similar to the cancer-free cohort but with a steeper yearly increase in PSA level (16.4% vs 4.0%). In the UK cohort, mean PSA level was higher than that in the cancer-free cohort (due to a PSA biopsy threshold of 3.0 ng/ml) but with a similar yearly increase in PSA level (4.1%). Predictions were less accurate for the SPCG-4 cohort (median observed minus predicted PSA level: −2.0 ng/ml; interquartile range [IQR]: −7.6–0.7 ng/ml) than for the UK cohort (median observed minus predicted PSA level: −0.8 ng/ml; IQR: −2.1–0.1 ng/ml).
Conclusions
In PSA-detected men, yearly change in PSA was similar to that in cancer-free men, whereas in men with symptomatic PCa, the yearly change in PSA level was considerably higher. Our method needs further evaluation but has promise for refining active monitoring protocols.
doi:10.1016/j.eururo.2009.03.023
PMCID: PMC2910432  PMID: 19303695
active surveillance; localised prostate cancer; PSA doubling time; PSA velocity; reference ranges
2.  Testing a Multigene Signature of Prostate Cancer Death in the Swedish Watchful Waiting Cohort 
While prostate cancer is a leading cause of cancer death, most men die with and not from their disease, underscoring the urgency to distinguish potentially lethal from indolent prostate cancer. We tested the prognostic value of a previously identified multigene signature of prostate cancer progression to predict cancer-specific death. The Örebro Watchful Waiting Cohort included 172 men with localized prostate cancer of whom 40 died of prostate cancer. We quantified protein expression of the markers in tumor tissue by immunohistochemistry, and stratified the cohort by quintiles according to risk classification. We accounted for clinical parameters (age, Gleason, nuclear grade, tumor volume) using Cox regression, and calculated Receiver Operator Curves to compare discriminatory ability. The hazard ratio of prostate cancer death increased with increasing risk classification by the multigene model, with a 16-fold greater risk comparing highest versus lowest risk strata, and predicted outcome independent of clinical factors (p=0.002). The best discrimination came from combining information from the multigene markers and clinical data, which perfectly classified the lowest risk stratum where no one developed lethal disease; using the two lowest risk groups as referent, the hazard ratio (95% confidence interval) was 11.3 (4.0–32.8) for the highest risk group and difference in mortality at 15 years was 60% (50–70%). The combined model provided greater discriminatory ability (AUC 0.78) than the clinical model alone (AUC 0.71), p=0.04. Molecular tumor markers can add to clinical parameters to help distinguish lethal and indolent prostate cancer, and hold promise to guide treatment decisions.
doi:10.1158/1055-9965.EPI-08-0044
PMCID: PMC2536630  PMID: 18583469

Results 1-2 (2)