PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-13 (13)
 

Clipboard (0)
None
Journals
more »
Year of Publication
Document Types
1.  Association of ApoE and LRP mRNA levels with dementia and AD neuropathology 
Neurobiology of Aging  2011;33(3):628.e1-628.e14.
Inheritance of the ε4 allele of ApoE is the only confirmed and consistently replicated risk factor for late onset AD. ApoE is also a key ligand for LRP, a major neuronal LDL receptor. Despite the considerable converging evidence that implicates ApoE and LRP in the pathogenesis of AD, the precise mechanism by which ApoE and LRP modulate the risk for AD remains elusive. Moreover, studies investigating expression of ApoE and LRP in AD brain have reported variable and contradictory results. To overcome these inconsistencies, we studied the mRNA expression of ApoE and LRP in the postmortem brain of persons who died at different stages of dementia and AD-associated neuropathology relative to controls by qPCR and Western blotting. Clinical dementia rating scores were used as a measure of dementia severity, whereas, Braak neuropathological staging and neuritic plaque density were used as indices of the neuropathological progression of AD. ApoE and LRP mRNA expression was significantly elevated in the postmortem inferior temporal gyrus (area 20) and the hippocampus from individuals with dementia compared to those with intact cognition. In addition to their strong association with the progression of cognitive dysfunction, LRP and ApoE mRNA levels were also positively correlated with increasing neuropathological hallmarks of AD. Additionally, Western blot analysis of ApoE protein expression in the hippocampus showed that the differential expression observed at the transcriptional level is also reflected at the protein level. Given the critical role played by LRP and ApoE in Aβ and cholesterol trafficking, increased expression of LRP and ApoE may not only disrupt cholesterol homeostasis but may also contribute to some of the neurobiological features of AD, including plaque deposition.
doi:10.1016/j.neurobiolaging.2011.04.010
PMCID: PMC3234309  PMID: 21676498
2.  Selective Frontoinsular von Economo Neuron and Fork Cell Loss in Early Behavioral Variant Frontotemporal Dementia 
Cerebral Cortex (New York, NY)  2011;22(2):251-259.
Behavioral variant frontotemporal dementia (bvFTD) erodes complex social–emotional functions as the anterior cingulate cortex (ACC) and frontoinsula (FI) degenerate, but the early vulnerable neuron within these regions has remained uncertain. Previously, we demonstrated selective loss of ACC von Economo neurons (VENs) in bvFTD. Unlike ACC, FI contains a second conspicuous layer 5 neuronal morphotype, the fork cell, which has not been previously examined. Here, we investigated the selectivity, disease-specificity, laterality, timing, and symptom relevance of frontoinsular VEN and fork cell loss in bvFTD. Blinded, unbiased, systematic sampling was used to quantify bilateral FI VENs, fork cells, and neighboring neurons in 7 neurologically unaffected controls (NC), 5 patients with Alzheimer's disease (AD), and 9 patients with bvFTD, including 3 who died of comorbid motor neuron disease during very mild bvFTD. bvFTD showed selective FI VEN and fork cell loss compared with NC and AD, whereas in AD no significant VEN or fork cell loss was detected. Although VEN and fork cell losses in bvFTD were often asymmetric, no group-level hemispheric laterality effects were identified. Right-sided VEN and fork cell losses, however, correlated with each other and with anatomical, functional, and behavioral severity. This work identifies region-specific neuronal targets in early bvFTD.
doi:10.1093/cercor/bhr004
PMCID: PMC3256403  PMID: 21653702
Alzheimer's disease; behavioral variant frontotemporal dementia; fork cell; frontoinsula; von Economo neuron
3.  Interactive Effects of Age and Estrogen on Cortical Neurons: Implications for Cognitive Aging 
Neuroscience  2011;191:148-158.
In the past few decades it has become clear that estrogen signaling plays a much larger role in modulating the cognitive centers of the brain than previously thought possible. We have developed a nonhuman primate (NHP) model to investigate the relationships between estradiol (E) and cognitive aging. Our studies of cyclical E treatment in ovariectomized (OVX) young and aged rhesus monkeys have revealed compelling cognitive and synaptic effects of E in the context of aging. Delayed response (DR), a task that is particularly dependent on integrity of dorsolateral prefrontal cortex (dlPFC) area 46 revealed the following: 1) that young OVX rhesus monkeys perform equally well whether treated with E or vehicle (V), and 2) that aged OVX animals given E perform as well as young adults with or without E, whereas OVX V-treated aged animals display significant DR impairment. We have analyzed the structure of layer III pyramidal cells in area 46 in these same monkeys. We found both age and treatment effects on these neurons that are consistent with behavioral data. Briefly, reconstructions of pyramidal neurons in area 46 from these monkeys showed that cyclical E increased the density of small, thin spines in both young and aged monkeys. However, this effect of E was against a background of age-related loss of small, thin spines, leaving aged V-treated monkeys with a particularly low density of these highly plastic spines and vulnerable to cognitive decline. Our current interpretation is that E not only plays a critically important role in maintaining spine number, but also enables synaptic plasticity through a cyclical increase in small highly plastic spines that may be stabilized in the context of learning. Interestingly, recent studies demonstrate that chronic E is less effective at inducing spinogenesis than cyclical E. We have begun to link certain molecular attributes of excitatory synapses in area 46 to E effects and cognitive performance in these monkeys. Given the importance of synaptic estrogen receptor α (ER-α) in rat hippocampus, we focused our initial studies on synaptic ER-α in area 46. Three key findings have emerged from these studies: 1) synaptic ER-α is present in axospinous synapses in area 46; 2) it is stable across treatment and age groups (which is not the case in rat hippocampus); and 3) the abundance and distribution of synaptic ER-α is a key correlate of individual variation in cognitive performance in certain age and treatment groups. These findings have important implications for the design of hormone treatment strategies for both surgically and naturally menopausal women.
doi:10.1016/j.neuroscience.2011.05.045
PMCID: PMC3166405  PMID: 21664255
Prefrontal cortex; estrogen; aging; primate; cognition; hormone replacement therapy
4.  Prevention of age-related changes in hippocampal levels of 5-methylcytidine by caloric restriction 
Neurobiology of Aging  2011;33(8):1672-1681.
Aberrant DNA methylation patterns have been linked to molecular and cellular alterations in the aging brain. Caloric restriction (CR) and upregulation of antioxidants have been proposed as interventions to prevent or delay age-related brain pathology. Previously, we have shown in large cohorts of aging mice, that age-related increases in DNA methyltransferase 3a (Dnmt3a) immunoreactivity in the mouse hippocampus were attenuated by CR, but not by overexpression of superoxide dismutase 1 (SOD1). Here, we investigated age-related alterations of 5-methylcytidine (5-mC), a marker of DNA methylation levels, in a hippocampal subregion-specific manner. Examination of 5-mC immunoreactivity in 12- and 24-month-old wild type (WT) mice on control diet, mice overexpressing SOD1 on control diet, wild type mice on CR, and SOD1 mice on CR, indicated an age-related increase in 5-mC immunoreactivity in the hippocampal dentate gyrus, CA3, and CA1–2 regions, which was prevented by CR but not by SOD1 overexpression. Moreover, positive correlations between 5-mC and Dnmt3a immunoreactivity were observed in the CA3 and CA1–2. These findings suggest a crucial role for DNA methylation in hippocampal aging and in the mediation of the beneficial effects of CR on aging.
doi:10.1016/j.neurobiolaging.2011.06.003
PMCID: PMC3355211  PMID: 21764481
Aging; Epigenesis; Epigenetics; DNA methylation; 5-methylcytidine (5-mC); Caloric restriction; Antioxidants; Superoxide dismutase (SOD); Hippocampus
5.  Anterior and Posterior Cingulate Cortex Volume in Healthy Adults: Effects of Aging and Gender Differences 
Brain research  2011;1401:18-29.
The cingulate cortex frequently shows gray matter loss with age as well as gender differences in structure and function, but little is known about whether individual cingulate Brodmann areas show gender-specific patterns of age-related volume decline. This study examined age-related changes, gender differences, and the interaction of age and gender in the relative volume of cingulate gray matter in areas 25, 24, 31, 23, and 29, over seven decades of adulthood. Participants included healthy, age-matched men and women, aged 20–87 (n = 70). Main findings were: (1) The whole cingulate showed significant age-related volume declines (averaging 5.54% decline between decades, 20s–80s). Each of the five cingulate areas also showed a significant decline with age, and individual areas showed different patterns of decline across the decades: Smaller volume with age was most evident in area 31, followed by 25 and 24. (2) Women had relatively larger cingulate gray matter volume than men overall and in area 24. (3) Men and women showed different patterns of age-related volume decline in area 31, at midlife and late in life. By delineating normal gender differences and age-related morphometric changes in the cingulate cortex over seven decades of adulthood, this study improves the baseline for comparison with structural irregularities in the cingulate cortex associated with psychopathology. The Brodmann area-based approach also facilitates comparisons across studies that aim to draw inferences between age- and gender-related structural differences in the cingulate gyrus and corresponding differences in cingulate function.
doi:10.1016/j.brainres.2011.05.050
PMCID: PMC3134959  PMID: 21669408
Cingulate cortex; aging; gender differences; MRI; gray matter; morphometry
6.  The Geneva brain collection 
Annals of the New York Academy of Sciences  2011;1225 Suppl 1:E131-E146.
The University of Geneva brain collection was founded at the beginning of the 20th century. Today, it consists of 10,154 formaldehyde- or buffered formaldehyde–fixed brains obtained from the autopsies of the Department of Psychiatry and, since 1971, from the Department of Geriatrics as well. More than 100,000 paraffin-embedded blocks and 200,000 histological slides have also been collected since 1901. From the time of its creation, this collection has served as an important resource for pathological studies and clinicopathological correlations, primarily in the field of dementing illnesses and brain aging research. These materials have permitted a number of original neuropathological observations, such as the classification of Pick’s disease by Constantinidis, or the description of dyshoric angiopathy and laminar sclerosis by Morel. The large number of cases, including some very rare conditions, provides a unique resource and an opportunity for worldwide collaborations.
doi:10.1111/j.1749-6632.2011.06008.x
PMCID: PMC3101879  PMID: 21599692
neuropathology; brain collection; normal aging; Alzheimer’s disease
7.  The von Economo neurons in fronto-insular and anterior cingulate cortex 
The von Economo neurons (VENs) are large bipolar neurons located in fronto-insular cortex (FI) and anterior limbic area (LA) in great apes and humans but not in other primates. Our stereological counts of VENs in FI and LA show them to be more numerous in humans than in apes. In humans, small numbers of VENs appear the 36th week post conception, with numbers increasing during the first eight months after birth. There are significantly more VENs in the right hemisphere in postnatal brains; this may be related to asymmetries in the autonomic nervous system. VENs are also present in elephants and whales and may be a specialization related to very large brain size. The large size and simple dendritic structure of these projection neurons suggest that they rapidly send basic information from FI and LA to other parts of the brain, while slower neighboring pyramids send more detailed information. Selective destruction of VENs in early stages of fronto-temporal dementia implies that they are involved in empathy, social awareness, and self-control, consistent with evidence from functional imaging.
doi:10.1111/j.1749-6632.2011.06011.x
PMCID: PMC3140770  PMID: 21534993
fronto-temporal dementia; autism; schizophrenia; empathy; disgust; self-awareness; hemispheric specialization
8.  Biochemical specificity of von Economo neurons in hominoids 
Von Economo neurons (VENs) are defined by their thin, elongated cell body and long dendrites projecting from apical and basal ends. These distinctive neurons are mostly present in anterior cingulate (ACC) and fronto-insular (FI) cortex, with particularly high densities in cetaceans, elephants, and hominoid primates (i.e., humans and apes). This distribution suggests that VENs contribute to specializations of neural circuits in species that share both large brain size and complex social cognition, possibly representing an adaptation to rapidly relay socially-relevant information over long distances across the brain. Recent evidence indicates that unique patterns of protein expression may also characterize VENs, particularly involving molecules that are known to regulate gut and immune function. In this study, we used quantitative stereologic methods to examine the expression of three such proteins that are localized in VENs – activating-transcription factor 3 (ATF3), interleukin 4 receptor (IL4Rα) and neuromedin B (NMB). We quantified immunoreactivity against these proteins in different morphological classes of ACC layer V neurons of hominoids. Among the different neuron types analyzed (pyramidal, VEN, fork, enveloping, and other multipolar), VENs showed the greatest percentage that displayed immunostaining. Additionally, a higher proportion of VENs in humans were immunoreactive to ATF3, IL4Rα, and NMB than in other apes. No other ACC layer V neuron type displayed a significant species difference in the percentage of immunoreactive neurons. These findings demonstrate that phylogenetic variation exists in the protein expression profile of VENs, suggesting that humans might have evolved biochemical specializations for enhanced interoceptive sensitivity.
doi:10.1002/ajhb.21135
PMCID: PMC3004764  PMID: 21140465
brain; evolution; ape; human; neuron
9.  RECENT DEVELOPMENTS IN NEUROPATHOLOGY OF AUTISM SPECTRUM DISORDERS 
Translational neuroscience  2011;2(3):256-264.
Autism spectrum disorders (ASD) represent complex neurodevelopmental disorders characterized by impairments in reciprocal social interactions, abnormal development and use of language, and monotonously repetitive behaviors. With an estimated heritability of more than 90%, it is the most strongly genetically influenced psychiatric disorder of the young age. In spite of the complexity of this disorder, there has recently been much progress in the research on etiology, early diagnosing, and therapy of autism. Besides already advanced neuropathologic research, several new technological innovations, such as sleep functional MRI, diffusion tensor imaging (DTI) and proton magnetic resonance spectroscopy imaging (1H-MRS) divulged promising breakthroughs in exploring subtle morphological and neurochemical changes in the autistic brain. This review provides a comprehensive summary of morphological and neurochemical alterations in autism known to date, as well as a short introduction to the functional research that has begun to advance in the last decade. Finally, we mention the progress in establishing new standardized diagnostic measures and its importance in early recognition and treatment of ASD.
PMCID: PMC3237008  PMID: 22180840
Autism; Autism spectrum disorder
10.  Characterization of MSB Synapses in Dissociated Hippocampal Culture with Simultaneous Pre- and Postsynaptic Live Microscopy 
PLoS ONE  2011;6(10):e26478.
Multisynaptic boutons (MSBs) are presynaptic boutons in contact with multiple postsynaptic partners. Although MSB synapses have been studied with static imaging techniques such as electron microscopy (EM), the dynamics of individual MSB synapses have not been directly evaluated. It is known that the number of MSB synapses increases with synaptogenesis and plasticity but the formation, behavior, and fate of individual MSB synapses remains largely unknown. To address this, we developed a means of live imaging MSB synapses to observe them directly over time. With time lapse confocal microscopy of GFP-filled dendrites in contact with VAMP2-DsRed-labeled boutons, we recorded both MSBs and their contacting spines hourly over 15 or more hours. Our live microscopy showed that, compared to spines contacting single synaptic boutons (SSBs), MSB-contacting spines exhibit elevated dynamic behavior. These results are consistent with the idea that MSBs serve as intermediates in synaptic development and plasticity.
doi:10.1371/journal.pone.0026478
PMCID: PMC3197663  PMID: 22028887
12.  Contact sport-related chronic traumatic encephalopathy in the elderly: clinical expression and structural substrates 
Professional boxers and other contact sport athletes are exposed to repetitive brain trauma that may affect motor functions, cognitive performance, emotional regulation and social awareness. The term of chronic traumatic encephalopathy (CTE) was recently introduced to regroup a wide spectrum of symptoms such as cerebellar, pyramidal, and extrapyramidal syndromes, impairments in orientation, memory, language, attention, information processing and frontal executive functions, as well as personality changes and behavioural and psychiatric symptoms. Magnetic resonance imaging (MRI) usually reveals hippocampal and vermis atrophy, a cavum septum pellucidum (CSP), signs of diffuse axonal injury, pituitary gland atrophy, dilated perivascular spaces, and periventricular white matter disease. Given the partial overlapping of the clinical expression, epidemiology, and pathogenesis of CTE and Alzheimer’s disease (AD), as well as the close association between traumatic brain injuries (TBIs) and neurofibrillary tangle formation, a mixed pathology promoted by pathogenetic cascades resulting in either CTE or AD has been postulated. Molecular studies suggested that TBIs increase the neurotoxicity of the TAR DNA-binding protein 43 (TDP-43) that is a key pathological marker of ubiquitin-positive forms of frontotemporal dementia (FTLD-TDP) associated or not with motor neuron disease/amyotrophic lateral sclerosis (MND/ALS). Similar patterns of immunoreactivity for TDP-43 in CTE, FTLD-TDP, and ALS as well as epidemiological correlations support the presence of common pathogenetic mechanisms. The present review provides a critical update of the evolution of the concept of CTE with reference to its neuropathological definition together with an in depth discussion of the differential diagnosis between this entity, AD and frontotemporal dementia.
doi:10.1111/j.1365-2990.2011.01186.x
PMCID: PMC3166385  PMID: 21696410
chronic traumatic encephalopathy; traumatic brain injuries; boxing; contact sports; Alzheimer’s disease; frontotemporal dementia; amyotrophic lateral sclerosis
13.  Amyloid beta protein-induced zinc sequestration leads to synaptic loss via dysregulation of the ProSAP2/Shank3 scaffold 
Background
Memory deficits in Alzheimer's disease (AD) manifest together with the loss of synapses caused by the disruption of the postsynaptic density (PSD), a network of scaffold proteins located in dendritic spines. However, the underlying molecular mechanisms remain elusive. Since it was shown that ProSAP2/Shank3 scaffold assembly within the PSD is Zn2+-dependent and that the amyloid beta protein (Aβ) is able to bind Zn2+, we hypothesize that sequestration of Zn2+ ions by Aβ contributes to ProSAP/Shank platform malformation.
Results
To test this hypothesis, we designed multiple in vitro and in vivo assays demonstrating ProSAP/Shank dysregulation in rat hippocampal cultures following Aβ oligomer accumulation. These changes were independent from alterations on ProSAP/Shank transcriptional level. However, application of soluble Aβ prevented association of Zn2+ ions with ProSAP2/Shank3 in a cell-based assay and decreased the concentration of Zn2+ clusters within dendrites. Zn2+ supplementation or saturation of Aβ with Zn2+ ions prior to cell treatment was able to counter the effects induced by Aβ on synapse density and ProSAP2/Shank3 levels at the PSD. Interestingly, intracellular Zn2+ levels in APP-PS1 mice and human AD hippocampus are reduced along with a reduction in synapse density and synaptic ProSAP2/Shank3 and Shank1 protein levels.
Conclusions
We conclude that sequestration of Zn2+ ions by Aβ significantly contributes to changes in ProSAP2/Shank3 platforms. These changes in turn lead to less consolidated (mature) synapses reflected by a decrease in Shank1 protein levels at the PSD and decreased synapse density in hippocampal neurons.
doi:10.1186/1750-1326-6-65
PMCID: PMC3189132  PMID: 21939532
PSD; Alzheimer's disease; ProSAP2; Shank3; Shank1; Amyloid; Oligomers; Zn2+; Hippocampus; synapse

Results 1-13 (13)