Search tips
Search criteria

Results 1-4 (4)

Clipboard (0)
Year of Publication
Document Types
1.  Functional Neural Correlates of Attentional Deficits in Amnestic Mild Cognitive Impairment 
PLoS ONE  2013;8(1):e54035.
Although amnestic mild cognitive impairment (aMCI; often considered a prodromal phase of Alzheimer’s disease, AD) is most recognized by its implications for decline in memory function, research suggests that deficits in attention are present early in aMCI and may be predictive of progression to AD. The present study used functional magnetic resonance imaging to examine differences in the brain during the attention network test between 8 individuals with aMCI and 8 neurologically healthy, demographically matched controls. While there were no significant behavioral differences between groups for the alerting and orienting functions, patients with aMCI showed more activity in neural regions typically associated with the networks subserving these functions (e.g., temporoparietal junction and posterior parietal regions, respectively). More importantly, there were both behavioral (i.e., greater conflict effect) and corresponding neural deficits in executive control (e.g., less activation in the prefrontal and anterior cingulate cortices). Although based on a small number of patients, our findings suggest that deficits of attention, especially the executive control of attention, may significantly contribute to the behavioral and cognitive deficits of aMCI.
PMCID: PMC3543395  PMID: 23326568
2.  Dynamic Gene Expression in the Human Cerebral Cortex Distinguishes Children from Adults 
PLoS ONE  2012;7(5):e37714.
In comparison with other primate species, humans have an extended juvenile period during which the brain is more plastic. In the current study we sought to examine gene expression in the cerebral cortex during development in the context of this adaptive plasticity. We introduce an approach designed to discriminate genes with variable as opposed to uniform patterns of gene expression and found that greater inter-individual variance is observed among children than among adults. For the 337 transcripts that show this pattern, we found a significant overrepresentation of genes annotated to the immune system process (pFDR≅0). Moreover, genes known to be important in neuronal function, such as brain-derived neurotrophic factor (BDNF), are included among the genes more variably expressed in childhood. We propose that the developmental period of heightened childhood neuronal plasticity is characterized by more dynamic patterns of gene expression in the cerebral cortex compared to adulthood when the brain is less plastic. That an overabundance of these genes are annotated to the immune system suggests that the functions of these genes can be thought of not only in the context of antigen processing and presentation, but also in the context of nervous system development.
PMCID: PMC3364291  PMID: 22666384
3.  Characterization of MSB Synapses in Dissociated Hippocampal Culture with Simultaneous Pre- and Postsynaptic Live Microscopy 
PLoS ONE  2011;6(10):e26478.
Multisynaptic boutons (MSBs) are presynaptic boutons in contact with multiple postsynaptic partners. Although MSB synapses have been studied with static imaging techniques such as electron microscopy (EM), the dynamics of individual MSB synapses have not been directly evaluated. It is known that the number of MSB synapses increases with synaptogenesis and plasticity but the formation, behavior, and fate of individual MSB synapses remains largely unknown. To address this, we developed a means of live imaging MSB synapses to observe them directly over time. With time lapse confocal microscopy of GFP-filled dendrites in contact with VAMP2-DsRed-labeled boutons, we recorded both MSBs and their contacting spines hourly over 15 or more hours. Our live microscopy showed that, compared to spines contacting single synaptic boutons (SSBs), MSB-contacting spines exhibit elevated dynamic behavior. These results are consistent with the idea that MSBs serve as intermediates in synaptic development and plasticity.
PMCID: PMC3197663  PMID: 22028887
4.  Automated Three-Dimensional Detection and Shape Classification of Dendritic Spines from Fluorescence Microscopy Images 
PLoS ONE  2008;3(4):e1997.
A fundamental challenge in understanding how dendritic spine morphology controls learning and memory has been quantifying three-dimensional (3D) spine shapes with sufficient precision to distinguish morphologic types, and sufficient throughput for robust statistical analysis. The necessity to analyze large volumetric data sets accurately, efficiently, and in true 3D has been a major bottleneck in deriving reliable relationships between altered neuronal function and changes in spine morphology. We introduce a novel system for automated detection, shape analysis and classification of dendritic spines from laser scanning microscopy (LSM) images that directly addresses these limitations. The system is more accurate, and at least an order of magnitude faster, than existing technologies. By operating fully in 3D the algorithm resolves spines that are undetectable with standard two-dimensional (2D) tools. Adaptive local thresholding, voxel clustering and Rayburst Sampling generate a profile of diameter estimates used to classify spines into morphologic types, while minimizing optical smear and quantization artifacts. The technique opens new horizons on the objective evaluation of spine changes with synaptic plasticity, normal development and aging, and with neurodegenerative disorders that impair cognitive function.
PMCID: PMC2292261  PMID: 18431482

Results 1-4 (4)