PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
1.  Elevated cerebrospinal fluid 5-hydroxyindoleacetic acid in macaques following early life stress and inverse association with hippocampal volume: preliminary implications for serotonin-related function in mood and anxiety disorders 
Background: Early life stress (ELS) is cited as a risk for mood and anxiety disorders, potentially through altered serotonin neurotransmission. We examined the effects of ELS, utilizing the variable foraging demand (VFD) macaque model, on adolescent monoamine metabolites. We sought to replicate an increase in cerebrospinal fluid (CSF) 5-hydroxyindoleacetic acid (5-HIAA) observed in two previous VFD cohorts. We hypothesized that elevated cisternal 5-HIAA was associated with reduced neurotrophic effects, conceivably due to excessive negative feedback at somatodendritic 5-HT1A autoreceptors. A putatively decreased serotonin neurotransmission would be reflected by reductions in hippocampal volume and white matter (WM) fractional anisotropy (FA).
Methods: When infants were 2–6 months of age, bonnet macaque mothers were exposed to VFD. We employed cisternal CSF taps to measure monoamine metabolites in VFD (N = 22) and non-VFD (N = 14) offspring (mean age = 2.61 years). Metabolites were correlated with hippocampal volume obtained by MRI and WM FA by diffusion tensor imaging in young adulthood in 17 males [10 VFD (mean age = 4.57 years)].
Results: VFD subjects exhibited increased CSF 5-HIAA compared to non-VFD controls. An inverse correlation between right hippocampal volume and 5-HIAA was noted in VFD- but not controls. CSF HVA and MHPG correlated inversely with hippocampal volume only in VFD. CSF 5-HIAA correlated inversely with FA of the WM tracts of the anterior limb of the internal capsule (ALIC) only in VFD.
Conclusions: Elevated cisternal 5-HIAA in VFD may reflect increased dorsal raphe serotonin, potentially inducing excessive autoreceptor activation, inducing a putative serotonin deficit in terminal fields. Resultant reductions in neurotrophic activity are reflected by smaller right hippocampal volume. Convergent evidence of reduced neurotrophic activity in association with high CSF 5-HIAA in VFD was reflected by reduced FA of the ALIC.
doi:10.3389/fnbeh.2014.00440
PMCID: PMC4274982  PMID: 25566007
variable foraging demand; MRI; cisternal tap; serotonin metabolite; monoamine metabolites
2.  Involvement of the anterior cingulate and frontoinsular cortices in rapid processing of salient facial emotional information 
NeuroImage  2010;54(3):2539-2546.
The anterior cingulate cortex (ACC) and frontoinsular cortex (FI) have been implicated in processing information across a variety of domains, including those related to attention and emotion. However, their role in rapid information processing, for example, as required for timely processing of salient stimuli, is not well understood. Here, we designed an emotional face priming paradigm and employed functional magnetic resonance imaging to elucidate their role in these mechanisms. Target faces with either neutral or fearful emotion were briefly primed by either neutral or fearful faces, or by blank ovals. Activation in the pregenual ACC and the FI, together with other regions, such as the amygdala, were preferentially activated in response to fearful face priming, suggesting that these regions are involved in the rapid processing of salient facial emotional information.
doi:10.1016/j.neuroimage.2010.10.007
PMCID: PMC3006498  PMID: 20937394
anterior cingulate cortex; emotion; fMRI; frontoinsular cortex; priming
3.  The role of early life stress in development of the anterior limb of the internal capsule in non-human primates 
Neuroscience letters  2010;480(2):93-96.
Background
Deep brain stimulation (DBS) of the anterior limb of the internal capsule (ALIC) may be effective in treating depression. Parental verbal abuse has been linked to decreased fractional anisotropy (FA) of white matter and reduced FA correlated with depression and anxiety scores. Utilizing a nonhuman primate model of mood and anxiety disorders following disrupted mother-infant attachment, we examined whether adverse rearing conditions lead to white matter impairment of the ALIC.
Methods
We examined white matter integrity using Diffusion Tensor Imaging (DTI) on a 3T-MRI. Twenty-one adult male Bonnet macaques participated in this study: 12 were reared under adverse [variable foraging demand (VFD)] conditions whereas 9 were reared under normative conditions. We examined ALIC, posterior limb of the internal capsule (PLIC) and occipital white matter.
Results
VFD rearing was associated with significant reductions in FA in the ALIC with no changes evident in the PLIC or occipital cortex white matter.
Conclusion
Adverse rearing in monkeys persistently impaired frontal white matter tract integrity, a novel substrate for understanding affective susceptibility.
doi:10.1016/j.neulet.2010.06.012
PMCID: PMC2951885  PMID: 20541590
Diffusion tensor imaging; fractional anisotropy; white matter integrity; variable foraging demand
4.  Diffusion tensor imaging in studying white matter complexity: A gap junction hypothesis 
Neuroscience letters  2010;475(3):161-164.
The role of the prefrontal cortex as an executive oversight of posterior brain regions raises the question of the extent to which the anterior regions of the brain interconnect with the posterior regions. The aim of this study is to test the complexity of rostral white matter tracts, which connect anterior and posterior brain regions, in comparison to caudal white matter tracts and the corpus callosum. Diffusion tensor imaging (DTI) is a modality that measures fractional anisotropy (FA). Higher white matter complexity could result in a decrease of FA, possibly through denser intersection of fiber tracts. DTI was used to determine regional FA in 9 healthy bonnet macaques (Macaca radiata). Four regions of interest were included: anterior and posterior limbs of the internal capsule, the occipital lobe white matter, and the corpus callosum. FA of the anterior limbs of the internal capsule was lowest compared to all other regions of interest (Newman-Keuls (N-K); p < 0.0001), whereas FA of the corpus callosum was highest (N-K; p < 0.0001). The posterior limbs of the internal capsule and the occipital white matter were not distinguishable but exhibited intermediate FA in comparison to the former (N-K; p < 0.0001) and the latter (N-K; p < 0.0001). The current study demonstrates that FA, a measure of white matter complexity, can vary markedly as a function of region of interest. Moreover, validation of these findings using neurohistological studies and replication in human samples appears warranted.
doi:10.1016/j.neulet.2010.03.070
PMCID: PMC2862850  PMID: 20371267
Diffusion tensor imaging; fractional anisotropy; white matter; gap junctions; nonhuman primates; neuroimaging; neurodevelopment

Results 1-4 (4)