PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-11 (11)
 

Clipboard (0)
None
Journals
Year of Publication
Document Types
1.  Stereological assessment of the dorsal anterior cingulate cortex in schizophrenia: absence of changes in neuronal and glial densities 
Aims
The prefrontal and anterior cingulate cortices are implicated in schizophrenia, and many studies have assessed volume, cortical thickness, and neuronal densities or numbers in these regions. Available data however are rather conflicting and no clear cortical alteration pattern has been established. Changes in oligodendrocytes and white matter have been observed in schizophrenia, introducing a hypothesis about a myelin deficit as a key event in disease development.
Methods
We investigated the dorsal anterior cingulate cortex (dACC) in 13 males with schizophrenia and 13 age- and gender-matched controls. We assessed stereologically the dACC volume, neuronal and glial densities, total neuron and glial numbers, and glia/neuron (GNI) ratios in both layers II-III and V-VI.
Results
We observed no differences in neuronal or glial densities. No changes were observed in dACC cortical volume, total neuron numbers, and total glial numbers in schizophrenia. This contrasts with previous findings and suggests that the dACC may not undergo as severe changes in schizophrenia as is generally believed. However, we observed higher glial densities in layers V-VI than in layers II-III in both controls and patients with schizophrenia, pointing to possible layer-specific effects on oligodendrocyte distribution during development.
Conclusions
Using rigorous stereological methods, we demonstrate a seemingly normal cortical organization in an important neocortical area for schizophrenia, emphasizing the importance of such morphometric approaches in quantitative neuropathology. We discuss the significance of subregion- and layer-specific alterations in the development of schizophrenia, and the discrepancies between post-mortem histopathological studies and in vivo brain imaging findings in patients.
doi:10.1111/j.1365-2990.2012.01296.x
PMCID: PMC3508088  PMID: 22860626
dysmyelination; oligodendrocytes; white matter; morphology; cytoarchitecture; myelin
2.  REGION-SPECIFIC NEURON AND SYNAPSE LOSS IN THE HIPPOCAMPUS OF APPSL/PS1 KNOCK-IN MICE 
Translational neuroscience  2013;4(1):8-19.
Transgenic mouse models with knock-in (KI) expression of human mutant amyloid precursor protein (APP) and/or human presenilin 1 (PS1) may be helpful to elucidate the cellular consequences of APP and PS1 misprocessing in the aging brain. Age-related alterations in total numbers of neurons and in numbers of synaptophysin-immunoreactive presynaptic boutons (SIPB), as well as the amyloid plaque load were analyzed in the hippocampal dentate gyrus (DG), CA3, and CA1–2 of 2- and 10-month-old APPSL/PS1 homozygous KI, APPSL (expressing human mutant APP751 carrying the Swedish [K670N/M671L] and London [V717I] mutations under Thy-1 promoter), and PS1 homozygous KI mice (expressing human PS1 mutations [M233T and L235P]). APPSL/PS1 homozygous KI mice, but neither APPSL mice nor PS1 homozygous KI mice, showed substantial age-related loss of neurons (−47.2%) and SIPB (−22.6%), specifically in CA1–2. PS1 homozygous KI mice showed an age-related increase in hippocampal granule cell numbers (+37.9%). Loss of neurons and SIPB greatly exceeded the amount of local extracellular Aβ aggregation and astrocytes, whereas region-specific accumulation of intraneuronal Aβ preceded neuron and synapse loss. An age-related increase in the ratio of SIPB to neuron numbers in CA1–2 of APPSL/PS1 homozygous KI mice was suggestive of compensatory synaptic plasticity. These findings indicate a region-selectivity in intra- and extraneuronal Aβ accumulation in connection with neuron and synapse loss in the hippocampus of APPSL/PS1 homozygous KI mice.
doi:10.2478/s13380-013-0111-8
PMCID: PMC4018205  PMID: 24829793
Alzheimer’s disease; Amyloid precursor protein; Neuron loss; Synapse loss; Hippocampus; Presenilin-1; Stereology; Image analysis
3.  Histone Deacetylase 2 in the Mouse Hippocampus: Attenuation of Age-Related Increase by Caloric Restriction 
Current Alzheimer research  2013;10(8):868-876.
The aging process in the hippocampus is associated with aberrant epigenetic marks, such as DNA methylation and histone tail alterations. Recent evidence suggests that caloric restriction (CR) can potentially delay the aging process, while upregulation of antioxidants may also have a beneficial effect in this respect. We have recently observed that CR attenuates age-related changes in the levels of the epigenetic molecules DNA methyltransferase 3a, 5-methylcytidine (5-mC) and 5-hydroxymethylcytosine in the mouse hippocampus while overexpression of the antioxidant Cu/Zn superoxide dismutase 1 (SOD1) does not. However, the impact of aging on the levels of histone-modifying enzymes such as histone deacetylase 2 (HDAC2) in the hippocampus has not been studied in much detail. Here, we investigated immunoreactivity (IR) of HDAC2 in three subregions of the hippocampus (dentate gyrus, CA3 and CA1-2) of mice taken from large cohorts of aging wild-type and transgenic mice overexpressing normal human SOD1, which were kept under normal diet or CR from weaning onwards. Independent from the genotype, aging (between 12 and 24 months) increased levels of HDAC2 IR in the hippocampus. Moreover, CR prevented this age-related increase, particularly in the CA3 and CA1-2 subregions, while SOD1 overexpression did not. Quantitative image analyses showed that HDAC2 IR correlated positively with 5-mC IR while these markers were shown to colocalize in the nucleus of hippocampal cells. Together with recent literature reports, these findings suggest that altered levels of epigenetic regulatory proteins including HDAC2 regulate age-related changes in the mouse hippocampus and that CR may prevent these age-related changes.
PMCID: PMC3966721  PMID: 24093534
Aging; epigenesis; histone deacetylase 2 (HDAC2); caloric restriction; hippocampus
4.  Current automated 3D cell detection methods are not a suitable replacement for manual stereologic cell counting 
Stereologic cell counting has had a major impact on the field of neuroscience. A major bottleneck in stereologic cell counting is that the user must manually decide whether or not each cell is counted according to three-dimensional (3D) stereologic counting rules by visual inspection within hundreds of microscopic fields-of-view per investigated brain or brain region. Reliance on visual inspection forces stereologic cell counting to be very labor-intensive and time-consuming, and is the main reason why biased, non-stereologic two-dimensional (2D) “cell counting” approaches have remained in widespread use. We present an evaluation of the performance of modern automated cell detection and segmentation algorithms as a potential alternative to the manual approach in stereologic cell counting. The image data used in this study were 3D microscopic images of thick brain tissue sections prepared with a variety of commonly used nuclear and cytoplasmic stains. The evaluation compared the numbers and locations of cells identified unambiguously and counted exhaustively by an expert observer with those found by three automated 3D cell detection algorithms: nuclei segmentation from the FARSIGHT toolkit, nuclei segmentation by 3D multiple level set methods, and the 3D object counter plug-in for ImageJ. Of these methods, FARSIGHT performed best, with true-positive detection rates between 38 and 99% and false-positive rates from 3.6 to 82%. The results demonstrate that the current automated methods suffer from lower detection rates and higher false-positive rates than are acceptable for obtaining valid estimates of cell numbers. Thus, at present, stereologic cell counting with manual decision for object inclusion according to unbiased stereologic counting rules remains the only adequate method for unbiased cell quantification in histologic tissue sections.
doi:10.3389/fnana.2014.00027
PMCID: PMC4019880  PMID: 24847213
automated cell segmentation; disector; FARSIGHT; Fractionator; ImageJ; stereology; stem cells
5.  Age-related increase in levels of 5-hydroxymethylcytosine in mouse hippocampus is prevented by caloric restriction 
Current Alzheimer research  2012;9(5):536-544.
Aberrations in epigenetic marks have been associated with aging of the brain while caloric restriction (CR) and upregulation of endogenous antioxidants have been suggested as tools to attenuate the aging process. We have recently observed age-related increases in levels of 5-methylcytidine (5-mC) and DNA methyltransferase 3a (Dnmt3a) in the mouse hippocampus. Most of those age-related changes in these epigenetic relevant markers were prevented by CR but not by transgenic overexpression of the endogenous antioxidant superoxide dismutase 1 (SOD1). As recent work has suggested a distinct role for hydroxymethylation in epigenetic regulation of gene expression in the brain, the current study investigated age-related changes of 5-hydroxymethylcytosine (5-hmC) in the mouse hippocampus, and furthermore tested whether CR and transgenic upregulation of SOD1 affected any age-related changes in 5-hmC. Immunohistochemical analyses of 5-hmC in 12- and 24-month-old wild-type and transgenic mice overexpressing SOD1, which were kept under either a control or a calorie restricted diet, revealed an increase of 5-hmC immunoreactivity occurring with aging in the hippocampal dentate gyrus, CA3 and CA1–2 regions. Moreover, CR, but not overexpression of SOD1, prevented the age-related increase in the CA3 region. These region-specific findings indicate that the aging process in mice is connected with epigenetic changes and suggest that the beneficial actions of CR may be mediated via epigenetic mechanisms such as methylation and hydroxymethylation of DNA.
PMCID: PMC3561726  PMID: 22272625
Aging; Epigenesis; Epigenetics; DNA hydroxymethylation; 5-hydroxymethylcytosine; Caloric restriction; Antioxidants; superoxide dismutase (SOD); Hippocampus
6.  Prevention of age-related changes in hippocampal levels of 5-methylcytidine by caloric restriction 
Neurobiology of Aging  2011;33(8):1672-1681.
Aberrant DNA methylation patterns have been linked to molecular and cellular alterations in the aging brain. Caloric restriction (CR) and upregulation of antioxidants have been proposed as interventions to prevent or delay age-related brain pathology. Previously, we have shown in large cohorts of aging mice, that age-related increases in DNA methyltransferase 3a (Dnmt3a) immunoreactivity in the mouse hippocampus were attenuated by CR, but not by overexpression of superoxide dismutase 1 (SOD1). Here, we investigated age-related alterations of 5-methylcytidine (5-mC), a marker of DNA methylation levels, in a hippocampal subregion-specific manner. Examination of 5-mC immunoreactivity in 12- and 24-month-old wild type (WT) mice on control diet, mice overexpressing SOD1 on control diet, wild type mice on CR, and SOD1 mice on CR, indicated an age-related increase in 5-mC immunoreactivity in the hippocampal dentate gyrus, CA3, and CA1–2 regions, which was prevented by CR but not by SOD1 overexpression. Moreover, positive correlations between 5-mC and Dnmt3a immunoreactivity were observed in the CA3 and CA1–2. These findings suggest a crucial role for DNA methylation in hippocampal aging and in the mediation of the beneficial effects of CR on aging.
doi:10.1016/j.neurobiolaging.2011.06.003
PMCID: PMC3355211  PMID: 21764481
Aging; Epigenesis; Epigenetics; DNA methylation; 5-methylcytidine (5-mC); Caloric restriction; Antioxidants; Superoxide dismutase (SOD); Hippocampus
7.  Accumulation of nuclear DNA damage or neuron loss: Molecular basis for a new approach to understanding selective neuronal vulnerability in neurodegenerative diseases 
DNA Repair  2008;7(7):1087-1097.
According to a long-standing hypothesis, aging is mainly caused by accumulation of nuclear (n) DNA damage in differentiated cells such as neurons due to insufficient nDNA repair during lifetime. In line with this hypothesis it was until recently widely accepted that neuron loss is a general consequence of normal aging, explaining some degree of decline in brain function during aging. However, with the advent of more accurate procedures for counting neurons, it is currently widely accepted that there is widespread preservation of neuron numbers in the aging brain, and the changes that do occur are relatively specific to certain brain regions and types of neurons. Whether accumulation of nDNA damage and decline in nDNA repair is a general phenomenon in the aging brain or also shows cell-type specificity is, however, not known. It has not been possible to address this issue with the biochemical and molecular-biological methods available to study nDNA damage and nDNA repair. Rather, it was the introduction of autoradiographic methods to study quantitatively the relative amounts of nDNA damage (measured as nDNA single-strand breaks) and nDNA repair (measured as unscheduled DNA synthesis) on tissue sections that made it possible to address this question in a cell-type-specific manner under physiological conditions. The results of these studies revealed a formerly unknown inverse relationship between age-related accumulation of nDNA damage and age-related impairment in nDNA repair on the one hand, and the age-related, selective, loss of neurons on the other hand. This inverse relation may not only reflect a fundamental process of aging in the central nervous system but also provide the molecular basis for a new approach to understand the selective neuronal vulnerability in neurodegenerative diseases, particularly Alzheimer’s disease.
doi:10.1016/j.dnarep.2008.03.010
PMCID: PMC2919205  PMID: 18458001
Aging; Alzheimer’s disease; Brain; DNA damage; DNA repair
8.  Spatial distribution and density of oligodendrocytes in the cingulum bundle are unaltered in schizophrenia 
Acta neuropathologica  2008;117(4):385-394.
It has been proposed that schizophrenia results partly from altered brain connectivity. Gene microarray analyses performed in gray matter have indicated that several myelin-related genes normally expressed in oligodendrocytes have decreased expression levels in schizophrenia. These data suggest that oligodendrocytes may be involved in the deficits of schizophrenia and may be decreased in number in the disease. The anterior cingulate cortex in particular has been demonstrated to be affected in schizophrenia, with studies reporting altered neuronal arrangement, decreased anisotropy in diffusion tensor images, and hypometabolism. We used a stereologic nearest-neighbor estimator of spatial distribution to investigate oligodendrocytes in the anterior cingulum bundle using postmortem tissue from 13 chronic schizophrenics and 13 age-matched controls. Using a spatial point pattern analysis, we measured the degree of oligodendrocyte clustering by comparing the probability of finding a nearest-neighbor at a given distance in schizophrenics and controls. At the same time, we also estimated the number and density of oligodendrocytes in the region of interest. In the present study, we found no significant differences in the oligodendrocyte distribution or density in the cingulum bundle between the two groups, in contrast to earlier data from the prefrontal subcortical white matter. These results suggest that a more subtle oligodendrocyte or myelin anomaly may underlie the structural deficits observed by brain imaging in the cingulum bundle in schizophrenia.
doi:10.1007/s00401-008-0379-x
PMCID: PMC2656594  PMID: 18438678
schizophrenia; oligodendrocyte; cingulate gyrus; stereology
9.  Neuropathology of the posteroinferior occipitotemporal gyrus in children with autism 
Molecular Autism  2014;5:17.
Background
While most neuropathologic studies focus on regions involved in behavioral abnormalities in autism, it is also important to identify whether areas that appear functionally normal are devoid of pathologic alterations. In this study we analyzed the posteroinferior occipitotemporal gyrus, an extrastriate area not considered to be affected in autism. This area borders the fusiform gyrus, which is known to exhibit functional and cellular abnormalities in autism.
Findings
No studies have implicated posteroinferior occipitotemporal gyrus dysfunction in autism, leading us to hypothesize that neuropathology would not occur in this area. We indeed observed no significant differences in pyramidal neuron number or size in layers III, V, and VI in seven pairs of autism and controls.
Conclusions
These findings are consistent with the hypothesis that neuropathology is unique to areas involved in stereotypies and social and emotional behaviors, and support the specificity of the localization of pathology in the fusiform gyrus.
doi:10.1186/2040-2392-5-17
PMCID: PMC3938306  PMID: 24564936
Autism; Fusiform gyrus; Neuropathology; Posteroinferior occipitotemporal gyrus; Stereology
10.  Hippocampal interneuron loss in an APP/PS1 double mutant mouse and in Alzheimer’s disease 
Brain structure & function  2010;214(2-3):145-160.
Hippocampal atrophy and neuron loss are commonly found in Alzheimer’s disease (AD). However, the underlying molecular mechanisms and the fate in the AD hippocampus of subpopulations of interneurons that express the calcium-binding proteins parvalbumin (PV) and calretinin (CR) has not yet been properly assessed. Using quantitative stereologic methods, we analyzed the regional pattern of age-related loss of PV- and CR-immunoreactive (ir) neurons in the hippocampus of mice that carry M233T/L235P knocked-in mutations in presenilin-1 (PS1) and overexpress a mutated human beta-amyloid precursor protein (APP), namely, the APPSL/PS1 KI mice, as well as in APPSL mice and PS1 KI mice. We found a loss of PV-ir neurons (40–50%) in the CA1-2, and a loss of CR-ir neurons (37–52%) in the dentate gyrus and hilus of APPSL/PS1 KI mice. Interestingly, comparable PV- and CR-ir neuron losses were observed in the dentate gyrus of postmortem brain specimens obtained from patients with AD. The loss of these interneurons in AD may have substantial functional repercussions on local inhibitory processes in the hippocampus.
doi:10.1007/s00429-010-0242-4
PMCID: PMC3038332  PMID: 20213270
Alzheimer’s disease; Amyloid precursor protein; Calcium-binding proteins; Hippocampus; Presenilin-1; Stereology
11.  Novel cerebrovascular pathology in mice fed a high cholesterol diet 
Background
Hypercholesterolemia causes atherosclerosis in medium to large sized arteries. Cholesterol is less known for affecting the microvasculature and has not been previously reported to induce microvascular pathology in the central nervous system (CNS).
Results
Mice with a null mutation in the low-density lipoprotein receptor (LDLR) gene as well as C57BL/6J mice fed a high cholesterol diet developed a distinct microvascular pathology in the CNS that differs from cholesterol-induced atherosclerotic disease. Microvessel diameter was increased but microvascular density and length were not consistently affected. Degenerative changes and thickened vascular basement membranes were present ultrastructurally. The observed pathology shares features with the microvascular pathology of Alzheimer's disease (AD), including the presence of string-like vessels. Brain apolipoprotein E levels which have been previously found to be elevated in LDLR-/- mice were also increased in C57BL/6J mice fed a high cholesterol diet.
Conclusion
In addition to its effects as an inducer of atherosclerosis in medium to large sized arteries, hypercholesterolemia also induces a microvascular pathology in the CNS that shares features of the vascular pathology found in AD. These observations suggest that high cholesterol may induce microvascular disease in a range of CNS disorders including AD.
doi:10.1186/1750-1326-4-42
PMCID: PMC2774302  PMID: 19852847

Results 1-11 (11)