PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
1.  Anterior and Posterior Cingulate Cortex Volume in Healthy Adults: Effects of Aging and Gender Differences 
Brain research  2011;1401:18-29.
The cingulate cortex frequently shows gray matter loss with age as well as gender differences in structure and function, but little is known about whether individual cingulate Brodmann areas show gender-specific patterns of age-related volume decline. This study examined age-related changes, gender differences, and the interaction of age and gender in the relative volume of cingulate gray matter in areas 25, 24, 31, 23, and 29, over seven decades of adulthood. Participants included healthy, age-matched men and women, aged 20–87 (n = 70). Main findings were: (1) The whole cingulate showed significant age-related volume declines (averaging 5.54% decline between decades, 20s–80s). Each of the five cingulate areas also showed a significant decline with age, and individual areas showed different patterns of decline across the decades: Smaller volume with age was most evident in area 31, followed by 25 and 24. (2) Women had relatively larger cingulate gray matter volume than men overall and in area 24. (3) Men and women showed different patterns of age-related volume decline in area 31, at midlife and late in life. By delineating normal gender differences and age-related morphometric changes in the cingulate cortex over seven decades of adulthood, this study improves the baseline for comparison with structural irregularities in the cingulate cortex associated with psychopathology. The Brodmann area-based approach also facilitates comparisons across studies that aim to draw inferences between age- and gender-related structural differences in the cingulate gyrus and corresponding differences in cingulate function.
doi:10.1016/j.brainres.2011.05.050
PMCID: PMC3134959  PMID: 21669408
Cingulate cortex; aging; gender differences; MRI; gray matter; morphometry
2.  Age and diffusion tensor anisotropy in adolescent and adult patients with schizophrenia 
NeuroImage  2009;45(3):662-671.
Findings of white matter pathology as indicated by diffusion tensor anisotropy values in schizophrenia are well established, but the differences in this measure between the onset of the disease and the chronic state are not well known. To investigate the differences between these states in the progression of the disease of schizophrenia we acquired 1.5 T diffusion tensor anisotropy images on 35 adult patients with schizophrenia and schizoaffective disorder, 23 adolescents having their first psychotic episode, and age and sex matched controls (33 adults and 15 adolescents). Regions of interest in major cortical white matter tracts chosen as salient to the prefrontal executive deficit in schizophrenia were assessed using stereotaxic coordinates from the Talairach and Tournoux atlas. Regions of each tract along anterior-posterior and/or inferior-superior directions in both hemispheres were evaluated in multiway ANOVA. Tracts between the frontal lobe and other brain regions, but not temporal, occipital and interhemispheric tracts, showed a differential aging pattern in normals and patients indicating that the white matter pathology in these regions is not stable between the onset and the chronic state in schizophrenia. This suggests that tracts involved in the connectivity of the temporal lobe white matter deficits were already well in place in adolescent patients, while frontal lobe pathology continues to develop from adolescence to adulthood.
doi:10.1016/j.neuroimage.2008.12.057
PMCID: PMC2677993  PMID: 19168139
3.  Diffusion Tensor Anisotropy in Adolescents and Adults 
Neuropsychobiology  2007;55(2):96-111.
We acquired diffusion tensor images on 33 normal adults aged 22–64 and 15 adolescents aged 14–21. We assessed relative anisotropy in stereotaxically located regions of interest in the internal capsule, corpus callosum, anterior thalamic radiations, frontal anterior fasciculus, fronto-occipital fasciculus, temporal lobe white matter, cingulum bundle, frontal inferior longitudinal fasciculus, frontal superior longitudinal fasciculus, and optic radiations. All of these structures except the optic radiations, corpus callosum, and frontal inferior longitudinal fasciculus exhibited differences in anisotropy between adolescents and adults. Areas with anisotropy increasing with age included the anterior limb of the internal capsule, superior levels of the frontal superior longitudinal fasciculus and the inferior portion of the temporal white matter. Areas with anisotropy decreasing with age included the posterior limb of the internal capsule, anterior thalamic radiations, fronto-occipital fasciculus, anterior portion of the frontal anterior fasciculus, inferior portion of the frontal superior longitudinal fasciculus, cingulum bundle and superior portion of the temporal axis. Sex differences were found in the majority of areas but were most marked in the cingulum bundle and internal capsule. These results suggest continuing white matter development between adolescence and adulthood.
doi:10.1159/000104277
PMCID: PMC2806688  PMID: 17587876
Age; White matter; Magnetic resonance imaging

Results 1-3 (3)