PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-11 (11)
 

Clipboard (0)
None
Journals
Year of Publication
Document Types
1.  Abnormal autonomic and associated brain activities during rest in autism spectrum disorder 
Brain  2014;137(1):153-171.
Autism spectrum disorders are associated with social and emotional deficits, the aetiology of which are not well understood. A growing consensus is that the autonomic nervous system serves a key role in emotional processes, by providing physiological signals essential to subjective states. We hypothesized that altered autonomic processing is related to the socio-emotional deficits in autism spectrum disorders. Here, we investigated the relationship between non-specific skin conductance response, an objective index of sympathetic neural activity, and brain fluctuations during rest in high-functioning adults with autism spectrum disorder relative to neurotypical controls. Compared with control participants, individuals with autism spectrum disorder showed less skin conductance responses overall. They also showed weaker correlations between skin conductance responses and frontal brain regions, including the anterior cingulate and anterior insular cortices. Additionally, skin conductance responses were found to have less contribution to default mode network connectivity in individuals with autism spectrum disorders relative to controls. These results suggest that autonomic processing is altered in autism spectrum disorders, which may be related to the abnormal socio-emotional behaviours that characterize this condition.
doi:10.1093/brain/awt294
PMCID: PMC3891443  PMID: 24424916
autism; autonomic nervous system; emotion; skin conductance; resting state
2.  Anterior Insular Cortex and Emotional Awareness 
The Journal of comparative neurology  2013;521(15):3371-3388.
This paper reviews the foundation for a role of the human anterior insular cortex (AIC) in emotional awareness, defined as the conscious experience of emotions. We first introduce the neuroanatomical features of AIC and existing findings on emotional awareness. Using empathy, the awareness and understanding of other people’s emotional states, as a test case, we then present evidence to demonstrate: 1) AIC and anterior cingulate cortex (ACC) are commonly coactivated as revealed by a meta-analysis, 2) AIC is functionally dissociable from ACC, 3) AIC integrates stimulus-driven and top-down information, and 4) AIC is necessary for emotional awareness. We propose a model in which AIC serves two major functions: integrating bottom-up interoceptive signals with top-down predictions to generate a current awareness state and providing descending predictions to visceral systems that provide a point of reference for autonomic reflexes. We argue that AIC is critical and necessary for emotional awareness.
doi:10.1002/cne.23368
PMCID: PMC3999437  PMID: 23749500
anterior insular cortex; emotional awareness; empathy; fMRI; meta-analysis; top-down; bottom-up; predictive coding
3.  Functional Neural Correlates of Attentional Deficits in Amnestic Mild Cognitive Impairment 
PLoS ONE  2013;8(1):e54035.
Although amnestic mild cognitive impairment (aMCI; often considered a prodromal phase of Alzheimer’s disease, AD) is most recognized by its implications for decline in memory function, research suggests that deficits in attention are present early in aMCI and may be predictive of progression to AD. The present study used functional magnetic resonance imaging to examine differences in the brain during the attention network test between 8 individuals with aMCI and 8 neurologically healthy, demographically matched controls. While there were no significant behavioral differences between groups for the alerting and orienting functions, patients with aMCI showed more activity in neural regions typically associated with the networks subserving these functions (e.g., temporoparietal junction and posterior parietal regions, respectively). More importantly, there were both behavioral (i.e., greater conflict effect) and corresponding neural deficits in executive control (e.g., less activation in the prefrontal and anterior cingulate cortices). Although based on a small number of patients, our findings suggest that deficits of attention, especially the executive control of attention, may significantly contribute to the behavioral and cognitive deficits of aMCI.
doi:10.1371/journal.pone.0054035
PMCID: PMC3543395  PMID: 23326568
4.  Cognition–Emotion Integration in the Anterior Insular Cortex 
Cerebral Cortex (New York, NY)  2012;23(1):20-27.
Both cognitive and affective processes require mental resources. However, it remains unclear whether these 2 processes work in parallel or in an integrated fashion. In this functional magnetic resonance imaging study, we investigated their interaction using an empathy-for-pain paradigm, with simultaneous manipulation of cognitive demand of the tasks and emotional valence of the stimuli. Eighteen healthy adult participants viewed photographs showing other people's hands and feet in painful or nonpainful situations while performing tasks of low (body part judgment) and high (laterality judgment) cognitive demand. Behavioral data showed increased reaction times and error rates for painful compared with nonpainful stimuli under laterality judgment relative to body part judgment, indicating an interaction between cognitive demand and stimulus valence. Imaging analyses showed activity in bilateral anterior insula (AI) and primary somatosensory cortex (SI), but not posterior insula, for main effects of cognitive demand and stimulus valence. Importantly, cognitive demand and stimulus valence showed a significant interaction in AI, SI, and regions of the frontoparietal network. These results suggest that cognitive and emotional processes at least partially share common brain networks and that AI might serve as a key node in a brain network subserving cognition–emotion integration.
doi:10.1093/cercor/bhr367
PMCID: PMC3513949  PMID: 22275476
cognition; emotion; empathy; fMRI; insula
5.  Anterior insular cortex is necessary for empathetic pain perception 
Brain  2012;135(9):2726-2735.
Empathy refers to the ability to perceive and share another person’s affective state. Much neuroimaging evidence suggests that observing others’ suffering and pain elicits activations of the anterior insular and the anterior cingulate cortices associated with subjective empathetic responses in the observer. However, these observations do not provide causal evidence for the respective roles of anterior insular and anterior cingulate cortices in empathetic pain. Therefore, whether these regions are ‘necessary’ for empathetic pain remains unknown. Herein, we examined the perception of others’ pain in patients with anterior insular cortex or anterior cingulate cortex lesions whose locations matched with the anterior insular cortex or anterior cingulate cortex clusters identified by a meta-analysis on neuroimaging studies of empathetic pain perception. Patients with focal anterior insular cortex lesions displayed decreased discrimination accuracy and prolonged reaction time when processing others’ pain explicitly and lacked a typical interference effect of empathetic pain on the performance of a pain-irrelevant task. In contrast, these deficits were not observed in patients with anterior cingulate cortex lesions. These findings reveal that only discrete anterior insular cortex lesions, but not anterior cingulate cortex lesions, result in deficits in explicit and implicit pain perception, supporting a critical role of anterior insular cortex in empathetic pain processing. Our findings have implications for a wide range of neuropsychiatric illnesses characterized by prominent deficits in higher-level social functioning.
doi:10.1093/brain/aws199
PMCID: PMC3437027  PMID: 22961548
anterior cingulate cortex; anterior insular cortex; empathy; meta-analysis; necessity
6.  Spontaneous brain activity relates to autonomic arousal 
Although possible sources and functions of the resting state networks (RSN) of the brain have been proposed, most evidence relies on circular logic and reverse inference. We propose that autonomic arousal provides an objective index of psychophysiological states during rest that may also function as a driving source of the activity and connectivity of RSN. Recording blood oxygenation level-dependent (BOLD) signal using functional magnetic resonance imaging and skin conductance simultaneously during rest in human subjects, we found that the spontaneous fluctuations of BOLD signals in key nodes of RSN are associated with changes in non-specific skin conductance response, a sensitive psychophysiological index of autonomic arousal. Our findings provide evidence of an important role for the autonomic nervous system to the spontaneous activity of the brain during ‘rest’.
doi:10.1523/JNEUROSCI.1172-12.2012
PMCID: PMC3435430  PMID: 22895703
resting-state functional connectivity MRI; autonomic arousal; skin conductance response; interoception; consciousness
7.  Functional deficits of the attentional networks in autism 
Brain and Behavior  2012;2(5):647-660.
Attentional dysfunction is among the most consistent observations of autism spectrum disorders (ASD). However, the neural nature of this deficit in ASD is still unclear. In this study, we aimed to identify the neurobehavioral correlates of attentional dysfunction in ASD. We used the Attention Network Test-Revised and functional magnetic resonance imaging to examine alerting, orienting, and executive control functions, as well as the neural substrates underlying these attentional functions in unmedicated, high-functioning adults with ASD (n = 12) and matched healthy controls (HC, n = 12). Compared with HC, individuals with ASD showed increased error rates in alerting and executive control, accompanied by lower activity in the mid-frontal gyrus and the caudate nucleus for alerting, and by the absence of significant functional activation in the anterior cingulate cortex (ACC) for executive control. In addition, greater behavioral deficiency in executive control in ASD was correlated with less functional activation of the ACC. These findings of behavioral and neural abnormalities in alerting and executive control of attention in ASD may suggest core attentional deficits, which require further investigation.
doi:10.1002/brb3.90
PMCID: PMC3489817  PMID: 23139910
Alerting; anterior cingulate cortex; attentional networks; autism; executive control
8.  In vivo 1H-magnetic resonance spectroscopy study of the attentional networks in autism 
Brain research  2010;1380:198-205.
Attentional dysfunction is one of the most consistent findings in individuals with autism spectrum disorders (ASD). However, the significance of such findings for the pathophysiology of autism is unclear. In this study, we investigated cellular neurochemistry with proton magnetic resonance spectroscopy imaging (1H-MRS) in brain regions associated with networks subserving alerting, orienting, and executive control of attention in patients with ASD. Concentrations of cerebral N-acetyl-aspartate (NAA), creatinine + phosphocreatinine, choline-containing compounds, myo-inositol (Ins) and glutamate + glutamine (Glx) were determined by 3 T 1H-MRS examinations in 14 high-functioning medication-free adults with a diagnosis of ASD and 14 age- and IQ-matched healthy controls (HC) in the anterior cingulate cortex (ACC), thalamus, temporoparietal junction (TPJ), and areas near or along the intraparietal sulcus (IPS). Compared to HC group, the ASD group showed significantly lower Glx concentrations in right ACC and reduced Ins in left TPJ. This study provides evidence of abnormalities in neurotransmission related to networks subserving executive control and alerting of attention, functions which have been previously implicated in ASD pathogenesis.
doi:10.1016/j.brainres.2010.12.057
PMCID: PMC3073642  PMID: 21185269
autism; spectroscopy; glutamate; anterior cingulate cortex; intraparietal sulcus; myo-inositol
9.  Involvement of the anterior cingulate and frontoinsular cortices in rapid processing of salient facial emotional information 
NeuroImage  2010;54(3):2539-2546.
The anterior cingulate cortex (ACC) and frontoinsular cortex (FI) have been implicated in processing information across a variety of domains, including those related to attention and emotion. However, their role in rapid information processing, for example, as required for timely processing of salient stimuli, is not well understood. Here, we designed an emotional face priming paradigm and employed functional magnetic resonance imaging to elucidate their role in these mechanisms. Target faces with either neutral or fearful emotion were briefly primed by either neutral or fearful faces, or by blank ovals. Activation in the pregenual ACC and the FI, together with other regions, such as the amygdala, were preferentially activated in response to fearful face priming, suggesting that these regions are involved in the rapid processing of salient facial emotional information.
doi:10.1016/j.neuroimage.2010.10.007
PMCID: PMC3006498  PMID: 20937394
anterior cingulate cortex; emotion; fMRI; frontoinsular cortex; priming
10.  Functional Dissociation of the Frontoinsular and Anterior Cingulate Cortices in Empathy for Pain 
The frontoinsular cortex (FI) and the anterior cingulate cortex (ACC) are known to be involved in empathy for others’ pain. However, the functional roles of FI and ACC in empathetic responses have not yet been clearly dissociated in previous studies. In this study, participants viewed color photographs depicting human body parts (hands or feet) in painful or non-painful situations and performed either pain judgment (painful/non-painful) or laterality judgment (left/right) of the body parts. We found that activation of FI, rather than ACC, showed significant increase for painful compared to non-painful images, regardless of the task requirement. These findings suggest a clear functional dissociation between FI and ACC in which FI is more domain-specific than ACC in processing of empathy for pain.
doi:10.1523/JNEUROSCI.4844-09.2010
PMCID: PMC2845539  PMID: 20220007
empathy; fMRI; insula; anterior cingulate cortex; pain; Emotion
11.  Provisional hypotheses for the molecular genetics of cognitive development: Imaging genetic pathways in the anterior cingulate cortex 
Biological psychology  2007;79(1):23-29.
Brain imaging genetic research involves a multitude of methods and spans many traditional levels of analysis. Given the vast permutations among several million common genetic variants with thousands of brain tissue voxels and a wide array of cognitive tasks that activate specific brain systems, we are prompted to develop specific hypotheses that synthesize converging evidence and state clear predictions about the anatomical sources, magnitude and direction (increases vs. decreases) of allele- and task-specific brain activity associations. To begin to develop a framework for shaping our imaging genetic hypotheses, we focus on previous results and the wider imaging genetic literature. Particular emphasis is placed on converging evidence that links system-level and biochemical studies with models of synaptic function. In shaping our own imaging genetic hypotheses on the development of Attention Networks, we review relevant literature on core models of synaptic physiology and development in the anterior cingulate cortex.
doi:10.1016/j.biopsycho.2007.12.006
PMCID: PMC2570040  PMID: 18261834

Results 1-11 (11)