PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None
Journals
Authors
more »
Year of Publication
Document Types
1.  Pericyte Migration 
Diabetes  2008;57(9):2495-2502.
OBJECTIVE— The mechanism underlying pericyte loss during incipient diabetic retinopathy remains controversial. Hyperglycemia induces angiopoietin-2 (Ang-2) transcription, which modulates capillary pericyte coverage. In this study, we assessed loss of pericyte subgroups and the contribution of Ang-2 to pericyte migration.
RESEARCH DESIGN AND METHODS— Numbers of total pericytes and their subgroups were quantified in retinal digest preparations of spontaneous diabetic XLacZ mice. Pericytes were divided into subgroups according to their localization, their position relative to adjacent endothelial cells, and the expression of LacZ. The contribution of Ang-2 to pericyte migration was assessed in Ang-2 overexpressing (mOpsinhAng2) and deficient (Ang2LacZ) mice.
RESULTS— Pericyte numbers were reduced by 16% (P < 0.01) in XLacZ mice after 6 months of diabetes. Reduction of pericytes was restricted to pericytes on straight capillaries (relative reduction 27%, P < 0.05) and was predominantly observed in LacZ-positive pericytes (−20%, P < 0.01). Hyperglycemia increased the numbers of migrating pericytes (69%; P < 0.05), of which the relative increase due to diabetes was exclusively in LacZ-negative pericytes, indicating reduced adherence to the capillaries (176%; P < 0.01). Overexpression of Ang-2 in nondiabetic retinas mimicked diabetic pericyte migration of wild-type animals (78%; P < 0.01). Ang-2 deficient mice completely lacked hyperglycemia-induced increase in pericyte migration compared with wild-type littermates.
CONCLUSIONS— Diabetic pericyte loss is the result of pericyte migration, and this process is modulated by the Ang-Tie system.
doi:10.2337/db08-0325
PMCID: PMC2518502  PMID: 18559662
2.  The clinical relevance of assessing advanced glycation endproducts accumulation in diabetes 
Cardiovascular disease is the major cause of morbidity and mortality associated with diabetes. There is increasing evidence that advanced glycation endproducts (AGEs) play a pivotal role in atherosclerosis, in particular in diabetes. AGE accumulation is a measure of cumulative metabolic and oxidative stress, and may so represent the "metabolic memory". Furthermore, increased AGE accumulation is closely related to the development of cardiovascular complications in diabetes. This review article will focus on the clinical relevance of measuring AGE accumulation in diabetic patients by focusing on AGE formation, AGEs as predictors of long-term complications, and interventions against AGEs.
doi:10.1186/1475-2840-7-29
PMCID: PMC2569910  PMID: 18840258

Results 1-2 (2)